The regulation of transferrin and iron release from the liver was studied using adult rat hepatocytes in primary monolayer culture. The cells were prelabeled by incubation with rat transferrin doubly labeled with iodine-125 and iron-59. Approximately 50% of the 125I-transferrin but only 10% of the iron-59 taken up by the cells was released during reincubation for 24 h. Less than 10% of the refluxed transferrin was catabolized as indicated by the protein-free iodine-125 values. These results suggest that at least part of iron uptake by hepatocytes is mediated by the reversible binding of transferrin in a manner comparable with erythroid cells and placenta. However, several iron chelators mobilized hepatic iron, in contrast to erythroid cells. Apotransferrin and desferrioxamine released a maximum of about 20% iron-59 with little effect on transferrin binding. A greater proportion of the iron-59 was available for chelation after shorter uptake times (1-2 h) than longer times. Hence, there are at least three iron compartments in hepatocytes in culture: rapidly refluxing iron that may be transferrin bound, a fixed pool, and a chelatable pool that may represent iron in transit between plasma transferrin and ferritin.
A palladium-modified nitrogen-doped titanium oxide (TiON/-PdO) photocatalytic fiber was synthesized on a mesoporous activated carbon fiber template by a sol-gel process. Calcination of the coated fibers resulted in a macroporous interfiber structure and mesoporous photocatalyst coating. Atomic ratios of major photocatalyst constituents determined by X-ray photoelectron spectroscopy analyses were N/Ti approximately equal to 0.1 and Pd/-Ti approximately equal to 0.03. X-ray diffraction analyses revealed that the photocatalyst had an anatase structure and palladium additive was present as PdO. Triplicate batch experiments performed with MS2 phage (average initial concentration of 3 x 10(8) plaque forming units/mL) and TiON/PdO photocatalyst at a dose of 0.1 g/L under dark conditions revealed the occurrence of virus adsorption on the photocatalyst fibers at a rate that resulted in equilibrium within 1 h of contact time with corresponding virion removals of 95.4-96.7%. Subsequent illumination of the dark-equilibrated samples with visible light (wavelengths greater than 400 nm and average intensity of 40 mW/cm2) resulted in additional virus removal of 94.5-98.2% within 1 h of additional contact time. By combining adsorption and visible-light photocatalysis, TiON/PdO fibers reached final virus removal rates of 99.75-99.94%. Spin trapping electron paramagnetic resonance (EPR) measurements confirmed the production of *OH radicals by TiON/PdO under visible light illumination, which provided indirect evidence about MS2 phage being potentially inactivated.
Response surface models of hot, humid air decontamination were developed which may be used to select decontamination parameters for contamination scenarios including aircraft.
Ferrate [Fe(VI); FeO(4)(2-)] is an emerging oxidizing agent capable of controlling chemical and microbial water contaminants. Here, inactivation of MS2 coliphage by Fe(VI) was examined. The inactivation kinetics observed in individual batch experiments was well described by a Chick-Watson model with first-order dependences on disinfectant and infective phage concentrations. The inactivation rate constant k(i) at a Fe(VI) dose of 1.23 mgFe/L (pH 7.0, 25 °C) was 2.27(±0.05) L/(mgFe × min), corresponding to 99.99% inactivation at a Ct of ~4 (mgFe × min)/L. Measured k(i) values were found to increase with increasing applied Fe(VI) dose (0.56-2.24 mgFe/L), increasing temperature (5-30 °C), and decreasing pH conditions (pH 6-11). The Fe(VI) dose effect suggested that an unidentified Fe byproduct also contributed to inactivation. Temperature dependence was characterized by an activation energy of 39(±6) kJ mol(-1), and k(i) increased >50-fold when pH decreased from 11 to 6. The pH effect was quantitatively described by parallel reactions with HFeO(4)(-) and FeO(4)(2-). Mass spectrometry and qRT-PCR analyses demonstrated that both capsid protein and genome damage increased with the extent of inactivation, suggesting that both may contribute to phage inactivation. Capsid protein damage, localized in the two regions containing oxidant-sensitive cysteine residues, and protein cleavage in one of the two regions may facilitate genome damage by increasing Fe(VI) access to the interior of the virion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.