Brain-derived neurotrophic factor (BDNF) is involved in synaptic plasticity, neuronal differentiation and survival of neurons. Observations of decreased serum BDNF levels in patients with neuropsychiatric disorders have highlighted the potential of BDNF as a biomarker, but so far there have been no studies directly comparing blood BDNF levels to brain BDNF levels in different species. We examined blood, serum, plasma and brain-tissue BDNF levels in three different mammalian species: rat, pig, and mouse, using an ELISA method. As a control, we included an analysis of blood and brain tissue from conditional BDNF knockout mice and their wild-type littermates. Whereas BDNF could readily be measured in rat blood, plasma and brain tissue, it was undetectable in mouse blood. In pigs, whole-blood levels of BDNF could not be measured with a commercially available ELISA kit, but pig plasma BDNF levels (mean 994±186 pg/ml) were comparable to previously reported values in humans. We demonstrated positive correlations between whole-blood BDNF levels and hippocampal BDNF levels in rats (r2=0.44, p=0.025) and between plasma BDNF and hippocampal BDNF in pigs (r2=0.41, p=0.025). Moreover, we found a significant positive correlation between frontal cortex and hippocampal BDNF levels in mice (r2=0.81, p=0.0139). Our data support the view that measures of blood and plasma BDNF levels reflect brain-tissue BDNF levels.
Klotho is a protein of significant importance for mineral homeostasis. It helps to increase parathyroid hormone (PTH) secretion and in the trafficking of Na+/K+-ATPase to the cell membrane; however, it is also a cofactor for fibroblast growth factor (FGF)-23 to interact with its receptor, FGFR1 IIIC, resulting in decreased PTH secretion. Studies on the regulation of parathyroid klotho expression in uremia have provided varying results. To help resolve this, we measured klotho expression in the parathyroid and its response to severe uremia, hyperphosphatemia, and calcitriol treatment in the 5/6 nephrectomy rat model of secondary hyperparathyroidism. Parathyroid klotho gene expression and protein were significantly increased in severely uremic hyperphosphatemic rats, but not affected by moderate uremia and normal serum phosphorus. Calcitriol suppressed klotho gene and protein expression in severe secondary hyperparathyroidism, despite a further increase in plasma phosphate. Both FGFR1 IIIC and Na+/K+-ATPase gene expression were significantly elevated in severe secondary hyperparathyroidism. Parathyroid gland klotho expression and the plasma calcium ion concentration were inversely correlated. Thus, our study suggests that klotho may act as a positive regulator of PTH expression and secretion in secondary hyperparathyroidism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.