We report the synthesis of layered [Zn(2)(bdc)(2)(H(2)O)(2)] and [Cu(2)(bdc)(2)(H(2)O)(2)] (bdc = benzdicarboxylate) metal-organic frameworks (MOF) carried out using the liquid-phase epitaxy approach employing self-assembled monolayer (SAM) modified Au-substrates. We obtain Cu and Zn MOF-2 structures, which have not yet been obtained using conventional, solvothermal synthesis methods. The 2D Cu(2+) dimer paddle wheel planes characteristic for the MOF are found to be strictly planar, with the planes oriented perpendicular to the substrate. Intercalation of an organic dye, DXP, leads to a reversible tilting of the planes, demonstrating the huge potential of these surface-anchored MOFs for the intercalation of large, planar molecules.
The influence of pressure on the structure and protein-protein interaction potential of dense protein solutions was studied and analyzed using small-angle x-ray scattering in combination with a liquid state theoretical approach. The structural as well as the interaction parameters of dense lysozyme solutions are affected by pressure in a nonlinear way. The structural properties of water lead to a modification of the protein-protein interactions below 4 kbar, which might have significant consequences for the stability of proteins in extreme natural environments.
Polysarcosine (pSar) is a polypeptoid based on the endogenous amino acid sarcosine (N-methylated glycine), which has previously shown potent stealth properties. Here, lipid nanoparticles (LNPs) for therapeutic application of messenger RNA were assembled using pSarcosinylated lipids as a tool for particle engineering. Using pSar lipids with different polymeric chain lengths and molar fractions enabled the control of the physicochemical characteristics of the LNPs, such as particle size, morphology, and internal structure. In combination with a suited ionizable lipid, LNPs were assembled, which displayed high RNA transfection potency with an improved safety profile after intravenous injection. Notably, a higher protein secretion with a reduced immunostimulatory response was observed when compared to systems based on polyethylene glycol (PEG) lipids. pSarcosinylated nanocarriers showed a lower proinflammatory cytokine secretion and reduced complement activation compared to PEGylated LNPs. In summary, the described pSar-based LNPs enable safe and potent delivery of mRNA, thus signifying an excellent basis for the development of PEG-free RNA therapeutics.
The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Therapeutic neutralizing antibodies constitute a key short-to-medium term approach to tackle COVID-19. However, traditional antibody production is hampered by long development times and costly production. Here, we report the rapid isolation and characterization of nanobodies from a synthetic library, known as sybodies (Sb), that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Several binders with low nanomolar affinities and efficient neutralization activity were identified of which Sb23 displayed high affinity and neutralized pseudovirus with an IC50 of 0.6 µg/ml. A cryo-EM structure of the spike bound to Sb23 showed that Sb23 binds competitively in the ACE2 binding site. Furthermore, the cryo-EM reconstruction revealed an unusual conformation of the spike where two RBDs are in the ‘up’ ACE2-binding conformation. The combined approach represents an alternative, fast workflow to select binders with neutralizing activity against newly emerging viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.