A comprehensive study of the OH and OD stretching fundamentals in clusters of methanol and its isotopomers CH(3)OD, CD(3)OH, and CD(3)OD provides detailed insights into the hydrogen-bond mediated coupling as a function of cluster size. The combination of infrared and Raman supersonic jet spectroscopy enables the observation and assignment of all hydrogen-bonded OH stretching modes of isolated methanol trimer and methanol tetramer. A consistent explanation for the spectral complexity observed more than a decade ago in methanol trimer in terms of low-frequency methyl umbrella motions is provided. Previous explanations based on cluster isomerism or anharmonic resonances are ruled out by dedicated jet experiments. The first experimental lower bound for concerted quadruple proton transfer in S(4) symmetric methanol tetramer is derived and compared with theoretical predictions. The observed isotope effects offer insights into the anharmonicity of the localized OH bond. The performance of harmonic B3LYP and MP2 calculations in predicting hydrogen-bond-induced spectral shifts and couplings is investigated.
Noncovalent interactions are particularly intriguing when they involve chiral molecules, because the interactions change in a subtle way upon replacing one of the partners by its mirror image. The resulting phenomena involving chirality recognition are relevant in the biosphere, in organic synthesis, and in polymer design. They may be classified according to the permanent or transient chirality of the interacting partners, leading to chirality discrimination, chirality induction, and chirality synchronization processes. For small molecules, high-level quantum chemical calculations for such processes are feasible. To provide reliable connections between theory and experiment, such phenomena are best studied in vacuum isolation at low temperature, using rotational, vibrational, electronic, and photoionization spectroscopy. We review these techniques and the results which have become available in recent years, with special emphasis on dimers of permanently chiral molecules and on the influence of conformational flexibility. Analogies between the microscopic mechanisms and macroscopic phenomena and between intra- and intermolecular cases are drawn.
The subtle trans-gauche equilibrium in the ethanol molecule is affected by hydrogen bonding. The resulting conformational complexity in ethanol dimer manifests itself in three hydrogen-bonded OH stretching bands of comparable infrared intensity in supersonic helium expansions. Admixture of argon or nitrogen promotes collisional relaxation and is shown to enhance the lowest frequency transition. Global and local harmonic frequency shift calculations at MP2 level indicate that this transition is due to a gauche-gauche dimer, but the predictions are sensitive to basis set and correlation level. Energetically, the homochiral gauche-gauche dimer is predicted to be the most stable ethanol dimer conformation. The harmonic MP2 predictions are corroborated by perturbative anharmonicity contributions and CCSD(T) energies. Thus, a consistent picture of the subtle hydrogen bond energetics and vibrational dynamics of the ethanol dimer is starting to emerge for the first time.
A new approach to the Fourier transform infrared (FTIR) absorption spectroscopy of molecular clusters in pulsed supersonic jets is developed to the point where it is competitive with high-sensitivity laser absorption techniques for intermediate and large molecular systems. A combination of rapid spectral acquisition and of a bu †ered jet chamber enables the use of intense gas pulses which cover complete interferometer scans. Applications to and demonstrate the capabilities of this technique. Investigations of (N 2 O) n , (CH 3 OH) n (HCl) n the association of bulky alcohols and of clusters within clusters illustrate some ongoing research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.