The pressures required for diamond and coesite formation far exceed conditions reached by even the deepest present-day orogenic crustal roots. Therefore the occurrence of metamorphosed continental crust containing these minerals requires processes other than crustal thickening to have operated in the past. Here we report the first in situ finding of diamond and coesite, characterized by micro-Raman spectroscopy, in high-pressure granulites otherwise indistinguishable from granulites found associated with garnet peridotite throughout the European Variscides. Our discovery confirms the provenance of Europe's first reliable diamond, the “Bohemian diamond,” found in A.D. 1870, and also represents the first robust evidence for ultrahigh-pressure conditions in a major Variscan crustal rock type. A process of deep continental subduction is required to explain the metamorphic pressures and the granulite–garnet peridotite association, and thus tectonometamorphic models for these rocks involving a deep orogenic crustal root need to be significantly modified.
International audienceThis study monitors regional changes in the crystallinity of carbonaceous matter (CM) by applying Micro-Raman spectroscopy to a total of 214 metasediment samples (largely so-called Bündnerschiefer) dominantly metamorphosed under blueschist- to amphibolite-facies conditions. They were collected within the northeastern margin of the Lepontine dome and easterly adjacent areas of the Swiss Central Alps. Three-dimensional mapping of isotemperature contours in map and profile views shows that the isotemperature contours associated with the Miocene Barrow-type Lepontine metamorphic event cut across refolded nappe contacts, both along and across strike within the northeastern margin of the Lepontine dome and adjacent areas. Further to the northeast, the isotemperature contours reflect temperatures reached during the Late Eocene subduction-related blueschist-facies event and/or during subsequent near-isothermal decompression; these contours appear folded by younger, large-scale post-nappe-stacking folds. A substantial jump in the recorded maximum temperatures across the tectonic contact between the frontal Adula nappe complex and surrounding metasediments indicates that this contact accommodated differential tectonic movement of the Adula nappe with respect to the enveloping Bündnerschiefer after maximum temperatures were reached within the northern Adula nappe, i.e. after Late Eocene time
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.