Similar to biometric fingerprint recognition, characteristic minutiae points -here end and branch points -can be extracted from skeletonised vein images to distinguish individuals. An approach to extract those vein minutiae and to transform them into a fixed-length, translation and scale invariant representation where rotations can be easily compensated is presented in this study. The proposed solution based on spectral minutiae is evaluated against other comparison strategies on three different datasets of wrist and palm dorsal vein samples. The authors' analysis shows a competitive biometric performance while producing features that are compatible with state-of-the-art template protection systems. In addition, a modified and more distinctive, but not transform or rotation invariant, representation is proposed and evaluated.
Finger image quality assessment is a crucial part of any system where a high biometric performance and user satisfaction is desired. Several algorithms measuring selected aspects of finger image quality have been proposed in the literature, yet only few of them have found their way into quality assessment algorithms used in practice. The authors provide comprehensive algorithm descriptions and make available implementations of adaptations of ten quality assessment algorithms from the literature which operates at the local or the global image level. They evaluate the performance on four datasets in terms of the capability in determining samples causing false non-matches and by their Spearman correlation with sample utility. The authors' evaluation shows that both the capability in rejecting samples causing false non-matches and the correlation between features varies depending on the dataset.
Quality assessment of biometric fingerprint images is necessary to ensure high biometric performance in biometric recognition systems. We relate the quality of a fingerprint sample to the biometric performance to ensure an objective and performance oriented benchmark. The proposed quality metric is based on Gabor filter responses and is evaluated against eight contemporary quality estimation methods on four datasets using sample utility derived from the separation of genuine and imposter distributions as benchmark. The proposed metric shows performance and consistency approaching that of the composite NFIQ quality assessment algorithm and is thus a candidate for inclusion in a feature vector introducing the NFIQ 2.0 metric.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.