Questions: (1) Do 17 seres studied proceed towards corresponding potential natural vegetation;(2) what are the similarities between seral and potential natural vegetation, and is it possible to estimate how long it takes to reach potential natural vegetation; and (3) do primary and secondary seres differ?Location: Extracted peatlands, corridors of the former iron curtain, artificial fishpond islands and barriers, sedimentary basins, various spoil heaps after mining, various stone quarries, forest clearings, burned-down forests, road verges, sand and gravel-sand pits, river gravel bars and abandoned arable fields located in various parts of the Czech Republic.Methods: Seral stages were sampled by phytosociological relev es (2602). The following categories of successional age were considered: early (1-10 yrs), intermediate (11-25 yrs) and late (>25 yrs). Phytosociological relev es (386) representing corresponding potential natural vegetation were extracted from the National Phytosociological Database. DCA and CCA ordinations were performed to compare the pattern of seral stages with potential natural vegetation and between primary and secondary seres. Dissimilarity between seral stages of primary and secondary successions and the corresponding potential natural vegetation was further assessed using the Bray-Curtis dissimilarity measure. Extrapolation was performed to estimate when the seres will reach the stage corresponding to potential natural vegetation. Results:The ordination showed that successions proceeded towards the corresponding potential natural vegetation and reflected substrate pH, site moisture and successional age. The estimated average time needed to reach potential natural vegetation was about 180 yrs for primary successions and about 260 yrs for secondary successions, considering presence-absence species data, and 200 and 250 yrs, respectively, considering cover data. All species recorded in potential natural vegetation (421) were also recorded in seral vegetation. Conclusions:In the general view across the high number of seres spread over the whole country, successions advanced in the direction of the corresponding potential natural vegetation. The extrapolated recovery of potential natural vegetation is faster in primary seres than in secondary ones, and seres sooner resemble the corresponding potential natural vegetation in species composition than in vegetation structure.
Changes in climate, land use, and land management impact the occurrence and severity of wildland fires in many parts of the world. This is particularly evident in Europe, where ongoing changes in land use have strongly modified fire patterns over the last decades. Although satellite data by the European Forest Fire Information System provide large-scale wildland fire statistics across European countries, there is still a crucial need to collect and summarize in-depth local analysis and understanding of the wildland fire condition and associated challenges across Europe. This article aims to provide a general overview of the current wildland fire patterns and challenges as perceived by national representatives, supplemented by national fire statistics (2009–2018) across Europe. For each of the 31 countries included, we present a perspective authored by scientists or practitioners from each respective country, representing a wide range of disciplines and cultural backgrounds. The authors were selected from members of the COST Action “Fire and the Earth System: Science & Society” funded by the European Commission with the aim to share knowledge and improve communication about wildland fire. Where relevant, a brief overview of key studies, particular wildland fire challenges a country is facing, and an overview of notable recent fire events are also presented. Key perceived challenges included (1) the lack of consistent and detailed records for wildland fire events, within and across countries, (2) an increase in wildland fires that pose a risk to properties and human life due to high population densities and sprawl into forested regions, and (3) the view that, irrespective of changes in management, climate change is likely to increase the frequency and impact of wildland fires in the coming decades. Addressing challenge (1) will not only be valuable in advancing national and pan-European wildland fire management strategies, but also in evaluating perceptions (2) and (3) against more robust quantitative evidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.