Under simulated competition day conditions mimicking four consecutive wrestling matches, acute caffeine ingestion has a partially detrimental effect on upper body intermittent sprint performance in trained wrestlers. Elevated HR and blood lactate levels observed between tests after caffeine ingestion suggest that caffeine may impair recovery between consecutive maximal efforts.
Acute caffeine ingestion is considered effective in improving endurance capacity and psychological state. However, current knowledge is based on the findings of studies that have been conducted on male subjects mainly in temperate environmental conditions, but some physiological and psychological effects of caffeine differ between the sexes. The purpose of this study was to compare the physical performance and psychological effects of caffeine in young women and men exercising in the heat. Thirteen male and 10 female students completed 2 constant-load walks (60% of thermoneutral peak oxygen consumption on a treadmill until volitional exhaustion) in a hot-dry environment (air temperature, 42 °C; relative humidity, 20%) after caffeine (6 mg·kg) and placebo (wheat flour) ingestion in a double-blind, randomly assigned, crossover manner. Caffeine, compared with placebo, induced greater increases (p < 0.05) in heart rate (HR) and blood lactate concentrations in both males and females but had no impact on rectal or skin temperatures or on walking time to exhaustion in subjects of either gender. Caffeine decreased (p < 0.05) ratings of perceived exertion and fatigue in males, but not in females. In females, but not in males, a stronger belief that they had been administered caffeine was associated with a shorter time to exhaustion. In conclusion, acute caffeine ingestion increases HR and blood lactate levels during exercise in the heat, but it has no impact on thermoregulation or endurance capacity in either gender. Under exercise-heat stress, caffeine reduces ratings of perceived exertion and fatigue in males but not in females.
BackgroundCreatine (CR) is considered an effective nutritional supplement having ergogenic effects, which appears more pronounced in upper-body compared to lower-body exercise. Nevertheless, results regarding the impact of CR loading on repeated high-intensity arm-cranking exercise are scarce and in some cases conflicting. Interestingly, few of the conducted studies have structured their research designs to mimic real world sporting events. Therefore, our purpose was to address the hypothesis that CR ingestion would increase anaerobic power output in consecutive upper-body intermittent sprint performance (UBISP) tests designed to simulate wrestling matches on a competition-day.MethodsIn a double-blind, placebo-controlled, parallel-group study, 20 trained wrestlers were assigned to either placebo or CR supplemented group (0.3 g ∙ kg−1 of body mass per day). Four 6-min UBISP tests interspersed with 30-min recovery periods were performed before (trial 1) and after 5 days (trial 2) of supplementation. Each test consisted of six 15-s periods of arm-cranking at maximal executable cadence against resistance of 0.04 kg ∙ kg−1 body mass interspersed with 40-s unloaded easy cranking periods and 5-s acceleration intervals (T1–T4). Mean power (MP), peak power (PP), fatigue index and heart rate parameters were measured during UBISP tests. Also, body weight and hydration status were assessed. Principle measures were statistical analysed with mixed-model ANOVAs.ResultsMean individual CR consumption in the CR group was 24.8 ± 2.5 g ∙ d−1. No significant (P > 0.05) differences occurred in body mass or hydration status indices between the groups or across trials. MP, PP and fatigue index responses were unaffected by supplementation; although, a significant reduction in MP and PP did occurred from T1 to T4 in both trial 1 and 2 (P < 0.001). Overall heart rate responses in the tests tended to be higher in the CR than PLC group (P < 0.05); but, trends in responses in trials and tests were comparable (P > 0.05).ConclusionThese results suggest that 5-day CR supplementation has no impact on upper-body muscle anaerobic power output in consecutive UBISP anaerobic tests mimicking wrestling matches on a competition day.
Acute CIT ingestion induces alkalosis, water retention, plasma volume expansion and an increase in post-exercise blood lactate concentration, but does not improve 5,000-m running performance in a warm environment in non-heat-acclimated endurance-trained males.
In trained wrestlers, CIT ingestion induces alkalosis, counteracts reduction in plasma volume, increases post-test blood lactate concentration and reduces perceived exertion, but does not improve PP or MP attained in consecutive UBISP tests simulating four wrestling matches of a competition-day.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.