Cyanobacteria are found worldwide in various habitats. Members of the picocyanobacteria genera Synechococcus and Prochlorococcus dominate in oligotrophic ocean waters. Other picocyanobacteria dominate in eutrophic fresh or brackish waters. Usually, these are morphologically determined as species of the order Chroococcales/clade B2. The phytoplankton of a shallow, eutrophic brackish lagoon was investigated. Phytoplankton was dominated by Aphanothece-like morphospecies year-round for more than 20 years, along a trophy and salinity gradient. A biphasic approach using a culture-independent and a culture-dependent analysis was applied to identify the dominant species genetically. The 16S rRNA gene phylogeny of clone sequences and isolates indicated the dominance of Cyanobium species (order Synechococcales sensu Komárek/clade C1 sensu Shih). This difference between morphologically and genetically based species identifications has consequences for applying the Reynolds functional-groups system, and for validity long-term monitoring data. The literature shows the same pattern as our results: morphologically, Aphanothece-like species are abundant in eutrophic shallow lagoons, and genetically, Cyanobium is found in similar habitats. This discrepancy is found worldwide in the literature on fresh- and brackish-water habitats. Thus, most Aphanothece-like morphospecies may be, genetically, members of Cyanobium.
Soil P pools are strongly driven by microbial activities, and vice versa, P pools shape bacterial communities and their functional potential. Biological soil crusts (biocrusts) represent a microbial hotspot for nutrient turnover. We compared biocrusts and bulk soil samples from different temperate beech (Fagus sylvatica L.) forests representing a gradient in soil texture, nutrient concentrations, and pH values at biocrust peak biomass. We measured the total and plant-available P and N concentrations and assessed the bacterial potential to mineralize (phoD, phnX), solubilize (gcd), and take up P (pstS and pitA) and mineralize (chiA, apr) and fix N (nifH) by quantifying the respective marker genes (qPCR). We found an increase of absolute and relative bacterial abundance involved in P turnover in biocrusts, but the strategy to acquire P differed between the regions as bacteria harboring the starvation-induced pstS gene were most abundant where labile P was lowest. In contrast, the region with lowest total P concentrations has a higher potential to utilize more stable phosphonates. N mineralization was strongly correlated to P turnover at regions with increased labile N and P concentrations. Interestingly, the potential to fix N was highest in the bulk soil where total P concentrations were highest. Even though the correlation of N and P turnover is strongest if their ratio is low, the acquisition strategy strongly depends on soil properties.
Biological soil crusts (biocrusts) harbor a diverse community of various microorganisms with microalgae as primary producers and bacteria living in close association. In mesic regions, biocrusts emerge rapidly on disturbed surface soil in forest, typically after clear-cut or windfall. It is unclear whether the bacterial community in biocrusts is similar to the community of the surrounding soil or if biocrust formation promotes a specific bacterial community. Also, many of the interactions between bacteria and algae in biocrusts are largely unknown. Through high-throughput-sequencing analysis of the bacterial community composition, correlated drivers, and the interpretation of biological interactions in a biocrust of a forest ecosystem, we show that the bacterial community in the biocrust represents a subset of the community of the neighboring soil. Bacterial families connected with degradation of large carbon molecules, like cellulose and chitin, and the bacterivore Bdellovibrio were more abundant in the biocrust compared to bulk soil. This points to a closer interaction and nutrient recycling in the biocrust compared to bulk soil. Furthermore, the bacterial richness was positively correlated with the content of mucilage producing algae. The bacteria likely profit from the mucilage sheaths of the algae, either as a carbon source or protectant from grazing or desiccation. Comparative sequence analyses revealed pronounced differences between the biocrust bacterial microbiome. It seems that the bacterial community of the biocrust is recruited from the local soil, resulting in specific bacterial communities in different geographic regions.
The German Baltic Sea coastline is characterized by sea-land transitions zones, specifically coastal peatlands. Such transition zones exhibit highly fluctuating environmental parameters and dynamic gradients that affect physiological processes of inhabiting organisms such as microphytobenthic communities. In the present study four representative and abundant benthic diatom strains [Melosira nummuloides, Nitzschia filiformis, Planothidium sp. (st. 1) and Planothidium sp. (st.2)] were isolated from a Baltic Sea beach and three peatlands that are irregularly affected by Baltic Sea water intrusion. Ecophysiological and cell biological traits of the strains were investigated for the first time as function of light, temperature and salinity. The four strains exhibited euryhaline growth over a range of 1–39 SA, surpassing in situ salinity of the respective brackish habitats. Furthermore, they showed eurythermal growth over a temperature range from 5 to 30°C with an optimum temperature between 15 and 20°C. Growth rates did not exhibit any differences between the peatland and Baltic Sea strains. The photosynthetic temperature optimum of the peatland diatom isolates, however, was much higher (20–35°C) compared to the Baltic Sea one (10°C). All strains exhibited light saturation points ranging between 29.8 and 72.6 μmol photons m–2 s–1. The lipid content did not change in response to the tested abiotic factors. All data point to wide physiological tolerances in these benthic diatoms along the respective sea-land transitions zones. This study could serve as a baseline for future studies on microphytobenthic communities and their key functions, like primary production, under fluctuating environmental stressors along terrestrial-marine gradients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.