In this study, spatial separation of the radar transmitter and receiver units is considered, as a means of reducing the masking effect in noise radars. A bistatic radar system is constructed, with emphasis on a lightweight transmitter unit that can be mounted on a commercial Unmanned Aerial Vehicle (UAV). The system uses pseudo-random noise, generated digitally at the receiver and transmitter units. Correlation losses, due to nonlinearities in the transmitter and receiver units, are measured to 0.1 dB. This study shows that by separating the transmitter and receiver unit the masking effect is significantly reduced, compared to a monostatic setup. This reduction is enough for the system to detect a slow flying UAV. Thus, bistatic separation should be considered as a practical tool to reduce the masking effect. By processing clutter with an extended CLEAN algorithm, the correlation noise floor is further suppressed.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.