Power conveyance potentiality for series and parallel allied battery-packages are constrained by the wickedest cell of the string. Every cell contains marginally dissimilar capability and terminal voltage because of industrialized acceptances and functional situations. During charging or discharging progression, the charge status of the cell strings become imbalanced and incline to loss equalization. Therefore, the enthusiasm of this paper is to design an active charge balancing system for Lithium-ion battery pack with the help of online state of charge (SOC) estimation technique. A Battery Management System (BMS) is modeled by means of controlling the SOC of the cells to upsurge the efficacy of rechargeable batteries. The capacity of each cell is calculated by dint of SOC function estimated as a result of Backpropagation Neural Network (BPNN) algorithm through four switched DC/DC Buck-Boost converter. The simulation results confirm that the designed BMS can synchronize the cell equalization via curtailing the SOC estimation error (RMSE 1.20%) productively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.