The remarkable fossil record of whales and dolphins (Cetacea) has made them an exemplar of macroevolution. Although their overall adaptive transition from terrestrial to fully aquatic organisms is well known, this is not true for the radiation of modern whales. Here, we explore the diversification of extant cetaceans by constructing a robust molecular phylogeny that includes 87 of 89 extant species. The phylogeny and divergence times are derived from nuclear and mitochondrial markers, calibrated with fossils. We find that the toothed whales are monophyletic, suggesting that echolocation evolved only once early in that lineage some 36–34 Ma. The rorqual family (Balaenopteridae) is restored with the exclusion of the gray whale, suggesting that gulp feeding evolved 18–16 Ma. Delphinida, comprising all living dolphins and porpoises other than the Ganges/Indus dolphins, originated about 26 Ma; it contains the taxonomically rich delphinids, which began diversifying less than 11 Ma. We tested 2 hypothesized drivers of the extant cetacean radiation by assessing the tempo of lineage accumulation through time. We find no support for a rapid burst of speciation early in the history of extant whales, contrasting with expectations of an adaptive radiation model. However, we do find support for increased diversification rates during periods of pronounced physical restructuring of the oceans. The results imply that paleogeographic and paleoceanographic changes, such as closure of major seaways, have influenced the dynamics of radiation in extant cetaceans.
One of the major difficulties in paleontology is the acquisition of fossil data from the 10% of Earth's terrestrial surface that is covered by thick glaciers and ice sheets. Here we reveal that DNA and amino acids from buried organisms can be recovered from the basal sections of deep ice cores and allow reconstructions of past flora and fauna. We show that high altitude southern Greenland, currently lying below more than two kilometers of ice, was once inhabited by a diverse array of conifer trees and insects that may date back more than 450 thousand years. The results provide the first direct evidence in support of a forested southern Greenland and suggest that many deep ice cores may contain genetic records of paleoenvironments in their basal sections.The environmental histories of high latitude regions such as Greenland and Antarctica are poorly understood because much of the fossil evidence is hidden below kilometer thick ice sheets (1-3). Here, we test the idea that the basal sections of deep ice cores can act as archives for ancient biomolecules and show that these molecules can be used to reconstruct significant parts of the past plant and animal life in currently ice covered areas.The samples studied come from the basal impurity rich (silty) ice sections of the 2km long Dye 3 core from south-central Greenland (4), the 3km long GRIP core from the summit of the UKPMC Funders Group Author Manuscript UKPMC Funders Group Author ManuscriptGreenland ice sheet (5), and the Late Holocene John Evans Glacier on Ellesmere Island, Nunavut, northern Canada (Fig. 1A,B). The latter sample was included as a control to test for potential exotic DNA because the glacier has recently overridden a land surface with a known vegetation cover (6). As an additional test for long-distance atmospheric dispersal of DNA, we included five control samples of debris-free Holocene and Pleistocene ice taken just above the basal silty samples from the Dye 3 and GRIP ice cores (Fig. 1B). Finally, our analyses included sediment samples from the Kap København Formation from the northernmost part of Greenland, dated to 2.4 million years before present (Ma BP) (1,2).The silty ice yielded only few pollen grains and no macrofossils (7). However, the Dye 3 and John Evans Glacier silty ice samples showed low levels of amino acid racemization (Fig. 1A, insert), indicating good organic matter preservation (8). Therefore, following previous success with permafrost and cave sediments (9-11), we attempted to amplify ancient DNA from the ice. This was done following strict criteria to secure authenticity (12-14), including covering the surface of the frozen cores with plasmid DNA to control for potential contamination that may have entered the interior of the samples through cracks or during the sampling procedure (7). PCR products of the plasmid DNA were obtained only from extracts of the outer ice scrapings but not from the interior, confirming that sample contamination had not penetrated the cores.We could reproducibly PCR amplify short ampli...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.