Intestinal bacteria are implicated increasingly as a pivotal factor in the development of Crohn's disease, but the specific components of the complex polymicrobial enteric environment driving the inflammatory response are unresolved. This study addresses the role of the ileal mucosa-associated microflora in Crohn's disease. A combination of culture-independent analysis of bacterial diversity (16S rDNA library analysis, quantitative PCR and fluorescence in situ hybridization) and molecular characterization of cultured bacteria was used to examine the ileal mucosa-associated flora of patients with Crohn's disease involving the ileum (13), Crohn's disease restricted to the colon (CCD) (8) and healthy individuals (7). Analysis of 16S rDNA libraries constructed from ileal mucosa yielded nine clades that segregated according to their origin (P<0.0001). 16S rDNA libraries of ileitis mucosa were enriched in sequences for Escherichia coli (P<0.001), but relatively depleted in a subset of Clostridiales (P<0.05). PCR of mucosal DNA was negative for Mycobacterium avium subspecies paratuberculosis, Shigella and Listeria. The number of E. coli in situ correlated with the severity of ileal disease (ρ 0.621, P<0.001) and invasive E. coli was restricted to inflamed mucosa. E. coli strains isolated from the ileum were predominantly novel in phylogeny, displayed pathogen-like behavior in vitro and harbored chromosomal and episomal elements similar to those described in extraintestinal pathogenic E. coli and pathogenic Enterobacteriaceae. These data establish that dysbiosis of the ileal mucosa-associated flora correlates with an ileal Crohn's disease (ICD) phenotype, and raise the possibility that a selective increase in a novel group of invasive E. coli is involved in the etiopathogenesis to Crohn's disease involving the ileum.
The development of molecularly targeted probes that exhibit high biostability, biocompatibility, and efficient clearance profiles is key to optimizing biodistribution and transport across biological barriers. Further, coupling probes designed to meet these criteria with high-sensitivity, quantitative imaging strategies is mandatory for ensuring early in vivo tumor detection and timely treatment response. These challenges have often only been examined individually, impeding the clinical translation of fluorescent probes. By simultaneously optimizing these design criteria, we created a new generation of near-infrared fluorescent core–shell silica-based nanoparticles (C dots) tuned to hydrodynamic diameters of 3.3 and 6.0 nm with improved photophysical characteristics over the parent dye. A neutral organic coating prevented adsorption of serum proteins and facilitated efficient urinary excretion. Detailed particle biodistribution studies were performed using more quantitative ex vivo fluorescence detection protocols and combined optical-PET imaging. The results suggest that this new generation of C dots constitutes a promising clinically translatable materials platform which may be adapted for tumor targeting and treatment.
In acute and chronic schistosomiasis, survival of the host requires a carefully balanced immune response against highly immunogenic parasite eggs. We characterized the phenotype, distribution, and functional role of CD4+Foxp3+ naturally occurring regulatory T cells (naTregs) in schistosome egg-induced inflammation. In adoptive transfer experiments and by intracellular staining for Foxp3, we demonstrate significant frequencies of naTregs in hepatic granulomas and draining lymphoid tissues of mice infected with the trematode Schistosoma mansoni. Strikingly, egg-induced inflammation does not change the normal ratio between naTregs and effector CD4+ T cells at the inflammatory site or in lymphoid organs in acute or chronic disease. However, increasing frequencies of CD103-expressing cells in the naTreg compartment indicate a change in phenotype for naTregs with disease progression. Because CD103 was described recently as an activation marker for naTregs, we speculate that naTregs in chronic schistosomiasis are potentially more suppressive. Furthermore, we found that most naTregs do not contribute to egg-induced IL-4 and IL-10 production. Importantly, depletion of CD25+ naTregs strongly enhances the frequency of IL-4-producing effector T cells in acute egg-induced inflammation. It does not change clonal expansion of activated CD4+ T cells. This regulation of egg-induced cytokine production does not require the presence of IL-10. These data demonstrate that naTregs limit egg-induced effector-cytokine production in our model. Our results identify naTregs as an important, IL-10-independent part of the regulatory network in schistosome egg-induced inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.