Objectives: Cardiopulmonary bypass is associated with severe immune dysfunctions. Particularly, a cardiopulmonary bypass–related long-lasting immunosuppressive state predisposes patients to a higher risk of postoperative complications, such as persistent bacterial infections. This study was conducted to elucidate mechanisms of post-cardiopulmonary bypass immunosuppression. Design: In vitro studies with human peripheral blood mononuclear cells. Setting: Cardiosurgical ICU, University Research Laboratory. Patients: Seventy-one patients undergoing cardiac surgery with cardiopulmonary bypass (enrolled May 2017 to August 2018). Interventions: Peripheral blood mononuclear cells before and after cardiopulmonary bypass were analyzed for the expression of immunomodulatory cell markers by real-time quantitative reverse transcription polymerase chain reaction. T cell effector functions were determined by enzyme-linked immunosorbent assay, carboxyfluorescein succinimidyl ester staining, and cytotoxicity assays. Expression of cell surface markers was assessed by flow cytometry. CD15+ cells were depleted by microbead separation. Serum arginine was measured by mass spectrometry. Patient peripheral blood mononuclear cells were incubated in different arginine concentrations, and T cell functions were tested. Measurements and Main Results: After cardiopulmonary bypass, peripheral blood mononuclear cells exhibited significantly reduced levels of costimulatory receptors (inducible T-cell costimulator, interleukin 7 receptor), whereas inhibitory receptors (programmed cell death protein 1 and programmed cell death 1 ligand 1) were induced. T cell effector functions (interferon γ secretion, proliferation, and CD8+-specific cell lysis) were markedly repressed. In 66 of 71 patients, a not yet described cell population was found, which could be characterized as myeloid-derived suppressor cells. Myeloid-derived suppressor cells are known to impair immune cell functions by expression of the arginine-degrading enzyme arginase-1. Accordingly, we found dramatically increased arginase-1 levels in post-cardiopulmonary bypass peripheral blood mononuclear cells, whereas serum arginine levels were significantly reduced. Depletion of myeloid-derived suppressor cells from post-cardiopulmonary bypass peripheral blood mononuclear cells remarkably improved T cell effector function in vitro. Additionally, in vitro supplementation of arginine enhanced T cell immunocompetence. Conclusions: Cardiopulmonary bypass strongly impairs the adaptive immune system by triggering the accumulation of myeloid-derived suppressor cells. These myeloid-derived suppressor cells induce an immunosuppressive T cell phenotype by increasing serum arginine breakdown. Supplementation with L-arginine may be an effective measure to counteract the onset of immunoparalysis in the setting of cardiopulmonary bypass.
Xenotransplantation, like allotransplantation, is usually associated with microchimerism, i.e., the presence of cells from the donor in the recipient. Microchimerism was reported in first xenotransplantation trials in humans, as well as in most preclinical trials in nonhuman primates (for review, see Denner, Viruses 2023, 15, 190). When using pigs as xenotransplantation donors, their cells contain porcine endogenous retroviruses (PERVs) in their genome. This makes it difficult to discriminate between microchimerism and PERV infection of the recipient. Here, we demonstrate the appropriate virological methods to be used for the identification of microchimerism, first by screening for porcine cellular genes, and then how to detect infection of the host. Using porcine short interspersed nuclear sequences (SINEs), which have hundreds of thousands of copies in the pig genome, significantly increased the sensitivity of the screening for pig cells. Second, absence of PERV RNA demonstrated an absence of viral genomic RNA or expression as mRNA. Lastly, absence of antibodies against PERV proteins conclusively demonstrated an absence of a PERV infection. When applying these methods for analyzing baboons after pig heart transplantation, microchimerism could be demonstrated and infection excluded in all animals. These methods can be used in future clinical trials.
Xenotransplantation is, like allotransplantation, usually associated with microchimerism, e.g., the presence of cells from the donor in the recipient. Microchimerism was reported in first xenotransplantation trials in humans as well as in most preclinical trials in non-human primates (for review see Denner, Viruses 2023, 15, 190). When using pigs as xenotransplantation donors, their cells contain porcine endogenous retroviruses (PERVs) in their genome. That makes it difficult to discriminate between microchimerism and PERV infection of the recipient. Here, we demonstrate which virological methods should be used to identify microchimerism, first of all screening for porcine cellular genes. Using porcine short interspersed nuclear sequences (SINES), which have hundred thousands of copies in the pig genome significantly increased the sensitivity of the screening for pig cells. Second, absence of PERV RNA demonstrated an absence of viral genomic RNA or expression as mRNA. Finally, absence of antibodies against PERV proteins conclusively demonstrated an absence of a PERV infection. When applying these methods for analyzing baboons after pig heart transplantation, microchimerism could be demonstrated in all animals. These methods can be used in future clinical trials.
Introduction:After orthotopic cardiac xenotransplantation, the combination of both the inflammatory responses to the exposure of a recipient to the xenogeneic organ and the use of cardiopulmonary bypass has been assumed to cause detrimental side effects.These have been described not only to affect the transplanted organ (heart) itself, but also the recipient's lungs. In this article, we summarize how these possible detrimental processes can be minimized or even avoided. Methods: Data from eight pig-to-baboon orthotopic cardiac xenotransplantation experiments were analyzed with a special focus on early (within the first week) postoperative organ dysfunction and systemic inflammatory responses. Non-ischemic heart preservation and the careful management of the heart-lung machine were deemed essential to guarantee not only the immediate function of the transplanted xenogeneic organ but also the prompt recovery of the recipient. Results: After weaning from cardiopulmonary bypass, very low catecholamine amounts were needed to ensure an adequate pump function and cardiac output. Central venous oxygen saturation and serum lactate levels remained within normal ranges. All animals were successfully weaned from ventilation within the first postoperative hours. Serum parameters of the transplants and native kidneys and livers were initially slightly elevated or always normal, as were hemoglobin, LDH, and platelet measurements. Markers of systemic inflammation, C-reactive protein, and IL-6 were slightly elevated, but the reactions caused no lasting damage. Conclusion: Consistent short-term and long-term results were achieved after orthotopic cardiac pig-to-baboon transplantation without detrimental inflammatory responses or signs of multiorgan failure. In comparison to allogeneic procedures, This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.