We summarize the original formulation of the free energy principle and highlight some technical issues. We discuss how these issues affect related results involving generalised coordinates and, where appropriate, mention consequences for and reveal, up to now unacknowledged, differences from newer formulations of the free energy principle. In particular, we reveal that various definitions of the “Markov blanket” proposed in different works are not equivalent. We show that crucial steps in the free energy argument, which involve rewriting the equations of motion of systems with Markov blankets, are not generally correct without additional (previously unstated) assumptions. We prove by counterexamples that the original free energy lemma, when taken at face value, is wrong. We show further that this free energy lemma, when it does hold, implies the equality of variational density and ergodic conditional density. The interpretation in terms of Bayesian inference hinges on this point, and we hence conclude that it is not sufficiently justified. Additionally, we highlight that the variational densities presented in newer formulations of the free energy principle and lemma are parametrised by different variables than in older works, leading to a substantially different interpretation of the theory. Note that we only highlight some specific problems in the discussed publications. These problems do not rule out conclusively that the general ideas behind the free energy principle are worth pursuing.
Contents1. Introduction1.1. A workshop and this document1.2. Framing origins of life science1.2.1. What do we mean by the origins of life (OoL)?1.2.2. Defining life1.2.3. How should we characterize approaches to OoL science?1.2.4. One path to life or many?2. A Strategy for Origins of Life Research2.1. Outcomes—key questions and investigations2.1.1. Domain 1: Theory2.1.2. Domain 2: Practice2.1.3. Domain 3: Process2.1.4. Domain 4: Future studies2.2. EON Roadmap2.3. Relationship to NASA Astrobiology Roadmap and Strategy documents and the European AstRoMap Appendix I Appendix II Supplementary Materials References
What is the biological advantage of having consciousness? Functions of consciousness have been elusive due to the subjective nature of consciousness and ample empirical evidence showing the presence of many nonconscious cognitive performances in the human brain. Drawing upon empirical literature, here, we propose that a core function of consciousness be the ability to internally generate representations of events possibly detached from the current sensory input. Such representations are constructed by generative models learned through sensory-motor interactions with the environment. We argue that the ability to generate information underlies a variety of cognitive functions associated with consciousness such as intention, imagination, planning, short-term memory, attention, curiosity, and creativity, all of which contribute to non-reflexive behaviour. According to this view, consciousness emerged in evolution when organisms gained the ability to perform internal simulations using internal models, which endowed them with flexible intelligent behaviour. To illustrate the notion of information generation, we take variational autoencoders (VAEs) as an analogy and show that information generation corresponds the decoding (or decompression) part of VAEs. In biological brains, we propose that information generation corresponds to top-down predictions in the predictive coding framework. This is compatible with empirical observations that recurrent feedback activations are linked with consciousness whereas feedforward processing alone seems to occur without evoking conscious experience. Taken together, the information generation hypothesis captures many aspects of existing ideas about potential functions of consciousness and provides new perspectives on the functional roles of consciousness.
Information processing in neural systems can be described and analyzed at multiple spatiotemporal scales. Generally, information at lower levels is more fine-grained but can be coarse-grained at higher levels. However, only information processed at specific scales of coarse-graining appears to be available for conscious awareness. We do not have direct experience of information available at the scale of individual neurons, which is noisy and highly stochastic. Neither do we have experience of more macro-scale interactions, such as interpersonal communications. Neurophysiological evidence suggests that conscious experiences co-vary with information encoded in coarse-grained neural states such as the firing pattern of a population of neurons. In this article, we introduce a new informational theory of consciousness: Information Closure Theory of Consciousness (ICT). We hypothesize that conscious processes are processes which form non-trivial informational closure (NTIC) with respect to the environment at certain coarse-grained scales. This hypothesis implies that conscious experience is confined due to informational closure from conscious processing to other coarse-grained scales. ICT proposes new quantitative definitions of both conscious content and conscious level. With the parsimonious definitions and a hypothesize, ICT provides explanations and predictions of various phenomena associated with consciousness. The implications of ICT naturally reconcile issues in many existing theories of consciousness and provides explanations for many of our intuitions about consciousness. Most importantly, ICT demonstrates that information can be the common language between consciousness and physical reality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.