The Cryphonectria parasitica populations in two 6-year-old European chestnut (Castanea sativa) coppices were investigated in southern Switzerland over a period of 4 years. Occurrence of white isolates indicating an infection with Cryphonectria hypovirus, vegetative compatibility groups (VCGs), hypovirulence conversion capacity, and mating types were used to characterize the populations. Sampling of randomly chosen cankers in the first year yielded 59% white isolates in one and 40% in the other population. The distribution of the VCGs and mating types was similar among white and orange isolates, indicating a homogeneous infection of the two populations by the hypovirus. Fourteen VCGs were found in the first population, 16 VCGs in the second. Altogether, 21 VCGs were determined. The same three VCGs dominated in both populations, comprising more than 60% of all isolates. Several VCGs were represented only by white isolates. Five of the six most common VCGs were clustered in two hypovirulence conversion groups, with almost 100% hypovirus transmission within each cluster. Repeated sampling of the same cankers in 1990, 1992, and 1994 did not reveal an increase of white isolates. The portion of blighted stems rose from 37% to about 60% in both plots within 4 years. In this time, chestnut blight killed 15% and competition an additional 21% of the sprouts. Predominantly, sprouts with low diameters at breast height were killed. The growth rate of new cankers was high in their first year and decreased gradually in the following years. A role of hypovirulence in the decline of disease severity was evident since (i) cankers yielding white isolates grew slower and killed considerably fewer sprouts than cankers with orange isolates; and (ii) the majority of the cankers yielded white isolates at least once during the 4-year observation period.
As in plants, fungi exhibit wide variation in reproductive strategies and mating systems. Although most sexually reproducing fungi are either predominantly outcrossing or predominantly selfing, there are some notable exceptions. The haploid, ascomycete chestnut blight pathogen, Cryphonectria parasitica, has previously been shown to have a mixed mating system in one population in USA. In this report, we show that both selfing and outcrossing occur in 10 additional populations of C. parasitica sampled from Japan, Italy, Switzerland and USA. Progeny arrays from each population were assayed for segregation at vegetative incompatibility (vic) and DNA fingerprinting loci. Outcrossing rates (t m ) were estimated as the proportion of progeny arrays showing segregation at one or more loci, corrected by the probability of nondetection of outcrossing (a #). Estimates of t m varied from 0.74 to 0.97, with the lowest rates consistently detected in USA populations (0.74-0.78). Five populations (four in USA and one in Italy) had t m significantly less than 1, supporting the conclusion that these populations exhibit mixed mating. The underlying causes of variation in outcrossing rates among populations of C. parasitica are not known, but we speculate that -as in plants -outcrossing is a function of ecological, demographic and genetic factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.