Modern verification commonly models software with Boolean logic and a system of linear inequalities over reals and overapproximates the reachable states of the model with Craig interpolation to obtain, for example, candidates for inductive invariants. Interpolants for the linear system can be efficiently constructed from a Simplex refutation by applying the Farkas' lemma. However, Farkas interpolants do not always suit the verification task and in the worst case they may even be the cause of divergence of the verification algorithm. This work introduces the decomposed interpolants, a fundamental extension of the Farkas interpolants obtained by identifying and separating independent components from the interpolant structure using methods from linear algebra. We integrate our approach to the model checker Sally and show experimentally that a portfolio of decomposed interpolants results in immediate convergence on instances where state-of-the-art approaches diverge. Being based on the efficient Simplex method, the approach is very competitive also outside these diverging cases.
While model checking safety of infinite-state systems by inferring state invariants has steadily improved recently, most verification tools still rely on a technique based on bounded model checking to detect safety violations. In particular, the current techniques typically analyze executions by unfolding transitions one step at a time, and the slow growth of execution length prevents detection of deep counterexamples before the tool reaches its limits on computations. We propose a novel model-checking algorithm that is capable of both proving unbounded safety and finding long counterexamples. The idea is to use Craig interpolation to guide the creation of symbolic abstractions of exponentially longer sequences of transitions. Our experimental analysis shows that on unsafe benchmarks with deep counterexamples our implementation can detect faulty executions that are at least an order of magnitude longer than those detectable by the state-of-the-art tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.