The combined impact of new computing resources and techniques with an increasing avalanche of large datasets, is transforming many research areas and may lead to technological breakthroughs that can be used by billions of people. In the recent years, Machine Learning and especially its subfield Deep Learning have seen impressive advances. Techniques developed within these two fields are now able to analyze and learn from huge amounts of real world examples in a disparate formats. While the number of Machine Learning algorithms is extensive and growing, their implementations through frameworks and libraries is also extensive and growing too. The software development in this field is fast paced with a large number of open-source software coming from the academy, industry, start-ups or wider open-source communities. This survey presents a recent time-slide comprehensive overview with comparisons as well as trends in development and usage of cutting-edge Artificial Intelligence software. It also provides an overview of massive parallelism support that is capable of scaling computation effectively and efficiently in the era of Big Data.
No abstract
The increasingly intensive collection of digitalized images of tumor tissue over the last decade made histopathology a demanding application in terms of computational and storage resources. With images containing billions of pixels, the need for optimizing and adapting histopathology to large-scale data analysis is compelling. This paper presents a modular pipeline with three independent layers for the detection of tumoros regions in digital specimens of breast lymph nodes with deep learning models. Our pipeline can be deployed either on local machines or high-performance computing resources with a containerized approach. The need for expertise in high-performance computing is removed by the self-sufficient structure of Docker containers, whereas a large possibility for customization is left in terms of deep learning models and hyperparameters optimization. We show that by deploying the software layers in different infrastructures we optimize both the data preprocessing and the network training times, further increasing the scalability of the application to datasets of approximatively 43 million images. The code is open source and available on Github.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.