Fatigue is an important mechanism for the failure of components in many engineering applications and a significant proportion of the fatigue life is spent in the crack initiation phase. Although a large number of research work addresses fatigue life and fatigue crack growth, the problem of modeling crack initiation remains a major challenge in the scientific and engineering community. In the present work, a micromechanical model is developed and applied to study fatigue crack initiation. In particular, the effect of different hardening mechanisms on fatigue crack initiation is investigated. To accomplish this, a model describing the evolution of the particular dislocation structures observed under cyclic plastic deformation is implemented and applied on randomly generated representative microstructures to investigate fatigue crack initiation. Finally, a method is presented to calculate the S-N curve for the polycrystalline materials. With this work, it is demonstrated how the micromechanical modeling can support the understanding of damage and failure mechanisms occurring during fatigue.
A simplified two-dimensional finite element model which simulates the in-air reverberation image produced by medical ultrasonic transducers has been developed. The model simulates a linear array consisting of 128 PZT-5A crystals, a tungsten-epoxy backing layer, an Araldite matching layer, and a Perspex lens layer. The thickness of the crystal layer is chosen to simulate pulses centered at 4 MHz. The model is used to investigate whether changes in the electromechanical properties of the individual transducer layers (backing layer, crystal layer, matching layer, and lens layer) have an effect on the simulated in-air reverberation image generated. Changes in the electromechanical properties are designed to simulate typical medical transducer faults such as crystal drop-out, lens delamination, and deterioration in piezoelectric efficiency. The simulations demonstrate that fault-related changes in transducer behaviour can be observed in the simulated in-air reverberation image pattern. This exploratory approach may help to provide insight into deterioration in transducer performance and help with early detection of faults.
Martensitic steels form a material class with a versatile range of properties that can be selected by varying the processing chain. In order to study and design the desired processing with the minimal experimental effort, modeling tools are required. In this work, a full processing cycle from quenching over tempering to mechanical testing is simulated with a single modeling framework that combines the features of the phase-field method and a coupled chemo-mechanical approach. In order to perform the mechanical testing, the mechanical part is extended to the large deformations case and coupled to crystal plasticity and a linear damage model. The quenching process is governed by the austenite-martensite transformation. In the tempering step, carbon segregation to the grain boundaries and the resulting cementite formation occur. During mechanical testing, the obtained material sample undergoes a large deformation that leads to local failure. The initial formation of the damage zones is observed to happen next to the carbides, while the final damage morphology follows the martensite microstructure. This multi-scale approach can be applied to design optimal microstructures dependent on processing and materials composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.