Reducing the energy consumption of industrial robots (IR) that are used in manufacturing systems has become a main focus in the development of green production systems. This is due to the reality that almost all automated manufacturing processes are using IR as the main component. Thus, reducing the energy consumption of IR will automatically reduce operating costs and CO 2 emissions. Therefore, a method for reducing the energy consumption of IR in manufacturing systems is desired. Firstly, this paper presents a literature survey of the research in energy consumption analysis of IR that is used in manufacturing processes. The survey found that current research in this field is focused on the development of simulation models of IR that are able to be used to predict its energy consumption. Secondly, a modular model to analyze power consumption and dynamic behavior of IR is developed. Afterward, an experimental investigation is carried out to validate and estimate the accuracy of the model developed. The investigation shows that the developed modular model can be conveniently used to optimize the industrial robot's operating parameters, which are commonly needed for production planning and at the process optimization stage. In addition, the investigation shows that the process constraints, environment layout, productivity requirement, Paryanto ( ) · M. Brossog · J. Franke as well as the robot payload and operating speed are the key factors that must be considered for optimizing the productivity and efficiency of IR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.