Recent studies have suggested that bone marrow cells might possess a much broader differentiation potential than previously appreciated. In most cases, the reported efficiency of such plasticity has been rather low and, at least in some instances, is a consequence of cell fusion. After myocardial infarction, however, bone marrow cells have been suggested to extensively regenerate cardiomyocytes through transdifferentiation. Although bone marrow-derived cells are already being used in clinical trials, the exact identity, longevity and fate of these cells in infarcted myocardium have yet to be investigated in detail. Here we use various approaches to induce acute myocardial injury and deliver transgenically marked bone marrow cells to the injured myocardium. We show that unfractionated bone marrow cells and a purified population of hematopoietic stem and progenitor cells efficiently engraft within the infarcted myocardium. Engraftment was transient, however, and hematopoietic in nature. In contrast, bone marrow-derived cardiomyocytes were observed outside the infarcted myocardium at a low frequency and were derived exclusively through cell fusion.
Cellular replacement therapy has emerged as a novel strategy for the treatment of heart failure. The aim of our study was to determine the fate of injected mesenchymal stem cells (MSCs) and whole bone marrow (BM) cells in the infarcted heart. MSCs were purified from BM of transgenic mice and characterized using flow cytometry and in vitro differentiation assays. Myocardial infarctions were generated in mice and different cell populations including transgenic MSCs, unfractionated BM cells, or purified hematopoietic progenitors were injected. Encapsulated structures were found in the infarcted areas of a large fraction of hearts after injecting MSCs (22 of 43, 51.2%) and unfractionated BM cells (6 of 46, 13.0%). These formations contained calcifications and/or ossifications. In contrast, no pathological abnormalities were found after injection of purified hematopoietic progenitors ( IntroductionSevere heart failure is caused by an irreversible loss of cardiomyocytes and has a poor prognosis regardless of the underlying disease. 1 Since medical treatment is of only limited help, solid organ transplantation was considered until recently the only effective therapy. However, as organ availability decreases, there is an urgent need for alternative treatments. Studies in mice have suggested that myocardial infarctions can be repaired following transplantation of bone marrow (BM)-derived cells into the lesioned myocardium, either through generation of cardiomyocytes or angiogenesis. 2 An underlying assumption of this approach is that the environment will instruct as well as restrict the developmental fate of adult stem cells after their transplantation (for review see Laflamme and Murry 3 or Murry et al 4 ). However, the original findings in mice have recently been put into question, since we and others have demonstrated that BM-derived hematopoietic cells do not transdifferentiate into cardiomyocytes in the infarcted myocardium. [5][6][7] In this study, we focused on the potential of an enriched population of mesenchymal stem cells (MSCs) that are known to be present in the BM and are multipotent. 8 In contrast to hematopoietic progenitors, MSCs are easy to obtain and to expand in vitro and have therefore emerged as attractive candidates for cellular therapies in heart and other organs. 9,10 However, recent reports have questioned their "transdifferentiation" potential after injection into the myocardium and rather propose benefits via paracrine mechanisms. 11,12 Herein, we investigated and provide novel insights with regard to the fate of enriched populations of BM-derived MSCs as well as whole BM cells comprising both hematopoietic and mesenchymal progenitors after transplantation into the infarcted heart. Materials and methodsAll experiments were approved by the local ethics care committees at Bonn, Cologne, and Lund Universities. Cells for transplantation were isolated from transgenic C57Bl/6 mice expressing enhanced green fluorescent protein (EGFP) under control of the -actin promoter. 13 Cell isolation and cultu...
Ventricular tachyarrhythmias are the main cause of sudden death in patients after myocardial infarction. Here we show that transplantation of embryonic cardiomyocytes (eCMs) in myocardial infarcts protects against the induction of ventricular tachycardia (VT) in mice. Engraftment of eCMs, but not skeletal myoblasts (SMs), bone marrow cells or cardiac myofibroblasts, markedly decreased the incidence of VT induced by in vivo pacing. eCM engraftment results in improved electrical coupling between the surrounding myocardium and the infarct region, and Ca2+ signals from engrafted eCMs expressing a genetically encoded Ca2+ indicator could be entrained during sinoatrial cardiac activation in vivo. eCM grafts also increased conduction velocity and decreased the incidence of conduction block within the infarct. VT protection is critically dependent on expression of the gap-junction protein connexin 43 (Cx43; also known as Gja1): SMs genetically engineered to express Cx43 conferred a similar protection to that of eCMs against induced VT. Thus, engraftment of Cx43-expressing myocytes has the potential to reduce life-threatening post-infarct arrhythmias through the augmentation of intercellular coupling, suggesting autologous strategies for cardiac cell-based therapy.
We examined the myogenic response to infarction in neonatal and adult mice to determine the role of c-kit + cardiovascular precursor cells (CPC) that are known to be present in early heart development. Infarction of postnatal day 1–3 c-kit BAC -EGFP mouse hearts induced the localized expansion of (c-kit)EGFP + cells within the infarct, expression of the c-kit and Nkx2.5 mRNA, myogenesis, and partial regeneration of the infarction, with (c-kit)EGFP + cells adopting myogenic and vascular fates. Conversely, infarction of adult mice resulted in a modest induction of (c-kit)EGFP + cells within the infarct, which did not express Nkx2.5 or undergo myogenic differentiation, but adopted a vascular fate within the infarction, indicating a lack of authentic CPC. Explantation of infarcted neonatal and adult heart tissue to scid mice, and adoptive transfer of labeled bone marrow, confirmed the cardiac source of myogenic (neonate) and angiogenic (neonate and adult) cells. FACS-purified (c-kit)EGFP + /(αMHC)mCherry − (noncardiac) cells from microdissected infarcts within 6 h of infarction underwent cardiac differentiation, forming spontaneously beating myocytes in vitro; cre/LoxP fate mapping identified a noncardiac population of (c-kit)EGFP + myocytes within infarctions, indicating that the induction of undifferentiated precursors contributes to localized myogenesis. Thus, adult postinfarct myogenic failure is likely not due to a context-dependent restriction of precursor differentiation, and c-kit induction following injury of the adult heart does not define precursor status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.