BackgroundCheckpoint inhibitors (CPIs) such as anti-PD(L)-1 and anti-CTLA-4 antibodies have resulted in unprecedented rates of antitumor responses and extension of survival of patients with a variety of cancers. But some patients fail to respond or initially respond but later relapse as they develop resistance to immune therapy. One of the tumor-extrinsic mechanisms for resistance to immune therapy is the accumulation of regulatory T cells (Treg) in tumors. In preclinical and clinical studies, it has been suggested that tumor trafficking of Treg is mediated by CC chemokine receptor 4 (CCR4). Over 90% of human Treg express CCR4 and migrate toward CCL17 and CCL22, two major CCR4 ligands that are either high at baseline or upregulated in tumors on CPI treatment. Hence, CCR4 antagonism has the potential to be an effective antitumor treatment by reducing the accumulation of Treg into the tumor microenvironment (TME).MethodsWe developed in vitro and in vivo models to assess Treg migration and antitumor efficacy using a potent and selective CCR4 antagonist, CCR4-351. We used two separate tumor models, Pan02 and CT26 mouse tumors, that have high and low CCR4 ligand expression, respectively. Tumor growth inhibition as well as the frequency of tumor-infiltrating Treg and effector T cells was assessed following the treatment with CCR4 antagonist alone or in combination with CPI.ResultsUsing a selective and highly potent, novel small molecule inhibitor of CCR4, we demonstrate that migration of CCR4+ Treg into the tumor drives tumor progression and resistance to CPI treatment. In tumor models with high baseline levels of CCR4 ligands, blockade of CCR4 reduced the number of Treg and enhanced antitumor immune activity. Notably, in tumor models with low baseline level of CCR4 ligands, treatment with immune CPIs resulted in significant increases of CCR4 ligands and Treg numbers. Inhibition of CCR4 reduced Treg frequency and potentiated the antitumor effects of CPIs.ConclusionTaken together, we demonstrate that CCR4-dependent Treg recruitment into the tumor is an important tumor-extrinsic mechanism for immune resistance. Blockade of CCR4 led to reduced frequency of Treg and resulted in increased antitumor activity, supporting the clinical development of CCR4 inhibitors in combination with CPI for the treatment of cancer.Statement of significanceCPI upregulates CCL17 and CCL22 expression in tumors and increases Treg migration into the TME. Pharmacological antagonism of the CCR4 receptor effectively inhibits Treg recruitment and results in enhanced antitumor efficacy either as single agent in CCR4 ligandhigh tumors or in combination with CPIs in CCR4 ligandlow tumors.
The CD20-specific monoclonal antibody rituximab (MabThera®, Rituxan®) is widely used as the backbone of treatment for patients with hematologic disorders. Intravenous administration of rituximab is associated with infusion times of 4–6 hours, and can be associated with infusion-related reactions. Subcutaneous administration of rituximab may reduce this and facilitate administration without infusion-related reactions. We sought to determine the feasibility of achieving equivalent efficacy (measured by endogenous B-cell depletion) and long-term durability of CD20 target coverage for subcutaneously administered rituximab compared with intravenous dosing. In these preclinical studies, male cynomolgus monkeys were treated with either intravenous rituximab or novel subcutaneous formulation of rituximab containing human recombinant DNA-derived hyaluronidase enzyme. Peripheral blood samples were analyzed for serum rituximab concentrations, peripheral B-cell depletion, and CD20 target coverage, including subset analysis according to CD21+ status. Distal lymph node B-cell depletion and CD20 target coverage were also measured. Initial peak serum concentrations of rituximab were significantly higher following intravenous administration than subcutaneous. However, the mean serum rituximab trough concentrations were comparable at 2 and 7 days post-first dose and 9 and 14 days post-second dose. Efficacy of B-cell depletion in both peripheral blood and distal lymph nodes was comparable for both methods. In lymph nodes, 9 days after the second dose with subcutaneous and intravenous rituximab, B-cell levels were decreased by 57% and 42% respectively. Similarly, levels of peripheral blood B cells were depleted by >94% for both subcutaneous and intravenous dosing at all time points. Long-term recovery of free unbound surface CD20 levels was similar, and the duration of B-cell depletion was equally sustained over 2 months for both methods. These results demonstrate that, despite initial peak serum drug level differences, subcutaneous rituximab has similar durability, pharmacodynamics, and efficacy compared with intravenous rituximab.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.