We are currently observing a plethora of Natural Language Processing tools and services being made available. Each of the tools and services has its particular strengths and weaknesses, but exploiting the strengths and synergistically combining different tools is currently an extremely cumbersome and time consuming task. Also, once a particular set of tools is integrated, this integration is not reusable by others. We argue that simplifying the interoperability of different NLP tools performing similar but also complementary tasks will facilitate the comparability of results and the creation of sophisticated NLP applications. In this paper, we present the NLP Interchange Format (NIF). NIF is based on a Linked Data enabled URI scheme for identifying elements in (hyper-)texts and an ontology for describing common NLP terms and concepts. In contrast to more centralized solutions such as UIMA and GATE, NIF enables the creation of heterogeneous, distributed and loosely coupled NLP applications, which use the Web as an integration platform. We present several use cases of the second version of the NIF specification (NIF 2.0) and the result of a developer study.
People differ in their willingness to take risks. Recent work found that revealed preference tasks (e.g., laboratory lotteries)—a dominant class of measures—are outperformed by survey-based stated preferences, which are more stable and predict real-world risk taking across different domains. How can stated preferences, often criticised as inconsequential “cheap talk,” be more valid and predictive than controlled, incentivized lotteries? In our multimethod study, over 3,000 respondents from population samples answered a single widely used and predictive risk-preference question. Respondents then explained the reasoning behind their answer. They tended to recount diagnostic behaviours and experiences, focusing on voluntary, consequential acts and experiences from which they seemed to infer their risk preference. We found that third-party readers of respondents’ brief memories and explanations reached similar inferences about respondents’ preferences, indicating the intersubjective validity of this information. Our results help unpack the self perception behind stated risk preferences that permits people to draw upon their own understanding of what constitutes diagnostic behaviours and experiences, as revealed in high-stakes situations in the real world.
Open-ended questions have routinely been included in large-scale survey and panel studies, yet there is some perplexity about how to actually incorporate the answers to such questions into quantitative social science research. Tools developed recently in the domain of natural language processing offer a wide range of options for the automated analysis of such textual data, but their implementation has lagged behind. In this study, we demonstrate straightforward procedures that can be applied to process and analyze textual data for the purposes of quantitative social science research. Using more than 35,000 textual answers to the question “What else are you worried about?” from participants of the German Socio-economic Panel Study (SOEP), we (1) analyzed characteristics of respondents that determined whether they answered the open-ended question, (2) used the textual data to detect relevant topics that were reported by the respondents, and (3) linked the features of the respondents to the worries they reported in their textual data. The potential uses as well as the limitations of the automated analysis of textual data are discussed.
Happiness is considered a highly desirable attribute, but whether or not individuals can actively steer their lives toward greater well-being is an open empirical question. In this study, respondents from a representative German sample reported, in text format, ideas for how they could improve their life satisfaction. We investigated which of these ideas predicted changes in life satisfaction 1 year later. Active pursuits per se-as opposed to statements about external circumstances or fortune-were not associated with changes in life satisfaction ( n = 1,178). However, in line with our preregistered hypothesis, among individuals who described active pursuits ( n = 582), those who described social ideas (e.g., spending more time with friends and family) ended up being more satisfied, and this effect was partly mediated by increased socializing. Our results demonstrate that not all pursuits of happiness are equally successful and corroborate the great importance of social relationships for human well-being.
People differ in their willingness to take risks. Recent work found that a dominant class of measures, revealed preference tasks (e.g., laboratory lotteries), appear not to tap into stable individual differences, whereas survey-based stated preferences are stable and predict real-world risk taking across different domains. How can stated preferences, often criticised as inconsequential ("cheap talk"), be more valid and predictive than controlled, incentivized lotteries? In our multi-method study, over 3,000 respondents from population samples answered a single widely used and predictive risk preference question. Respondents then explained the reasoning behind their answer. They tended to recount diagnostic behaviours and experiences, focusing on voluntary, consequential acts and experiences from which they seemed to infer their risk preference. We found that third-party readers of respondents' brief memories and explanations reached similar inferences about respondents' preferences, indicating the intersubjective validity of this information. Our results also shed light on the process of preference formation through experience over the lifespan. Finally, stated risk preferences may capture preferences revealed in behaviours in the wild better than the contrived behavioural tasks preferred in economics because they permit people to draw upon their own understanding of what constitutes diagnostic behaviours and experiences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.