Schelling’s model is an influential model that reveals how individual perceptions and incentives can lead to residential segregation. Inspired by a recent stream of work, we study welfare guarantees and complexity in this model with respect to several welfare measures. First, we show that while maximizing the social welfare is NP-hard, computing an assignment of agents to the nodes of any topology graph with approximately half of the maximum welfare can be done in polynomial time. We then consider Pareto optimality, introduce two new optimality notions based on it, and establish mostly tight bounds on the worst-case welfare loss for assignments satisfying these notions as well as the complexity of computing such assignments. In addition, we show that for tree topologies, it is possible to decide whether there exists an assignment that gives every agent a positive utility in polynomial time; moreover, when every node in the topology has degree at least 2, such an assignment always exists and can be found efficiently.
A common theme of decision making in multi-agent systems is to assign utilities to alternatives, which individuals seek to maximize. This rationale is questionable in coalition formation where agents are affected by other members of their coalition. Based on the assumption that agents are benevolent towards other agents they like to form coalitions with, we propose loyalty in hedonic games, a binary relation dependent on agents' utilities. Given a hedonic game, we define a loyal variant where agents' utilities are defined by taking the minimum of their utility and the utilities of agents towards which they are loyal. This process can be iterated to obtain various degrees of loyalty, terminating in a locally egalitarian variant of the original game. We investigate axioms of group stability and efficiency for different degrees of loyalty. Specifically, we consider the problem of finding coalition structures in the core and of computing best coalitions, obtaining both positive and intractability results. In particular, the limit game possesses Pareto optimal coalition structures in the core.
The formation of stable coalitions is a central concern in multiagent systems. A considerable stream of research defines stability via the absence of beneficial deviations by single agents. Such deviations require an agent to improve her utility by joining another coalition while possibly imposing further restrictions on the consent of the agents in the welcoming as well as the abandoned coalition. While most of the literature focuses on unanimous consent, we also study consent decided by majority vote, and introduce two new stability notions that can be seen as local variants of popularity. We investigate these notions in additively separable hedonic games by pinpointing boundaries to computational complexity depending on the type of consent and restrictions on the utility functions. The latter restrictions shed new light on well-studied classes of games based on the appreciation of friends or the aversion to enemies. Many of our positive results follow from the Deviation Lemma, a general combinatorial observation, which can be leveraged to prove the convergence of simple and natural single-agent dynamics under fairly general conditions.
The formal study of coalition formation in multiagent systems is typically realized using so-called hedonic games, which originate from economic theory. The main focus of this branch of research has been on the existence and the computational complexity of deciding the existence of coalition structures that satisfy various stability criteria. The actual process of forming coalitions based on individual behavior has received little attention. In this paper, we study the convergence of simple dynamics leading to stable partitions in a variety of classes of hedonic games, including anonymous, dichotomous, fractional, and hedonic diversity games. The dynamics we consider is based on individual stability: an agent will join another coalition if she is better off and no member of the welcoming coalition is worse off. We identify conditions for convergence, provide elaborate counterexamples of existence of individually stable partitions, and study the computational complexity of problems related to the coalition formation dynamics. In particular, we settle open problems suggested by Bogomolnaia and Jackson (2002), Brandl, Brandt, and Strobel (2015), and Boehmer and Elkind (2020).
Schelling's model is an influential model that reveals how individual perceptions and incentives can lead to racial segregation. Inspired by a recent stream of work, we study welfare guarantees and complexity in this model with respect to several welfare measures. First, we show that while maximizing the social welfare is NP-hard, computing an assignment with approximately half of the maximum welfare can be done in polynomial time. We then consider Pareto optimality and introduce two new optimality notions, and establish mostly tight bounds on the worst-case welfare loss for assignments satisfying these notions. In addition, we show that for trees, it is possible to decide whether there exists an assignment that gives every agent a positive utility in polynomial time; moreover, when every node in the topology has degree at least 2, such an assignment always exists and can be found efficiently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.