Keywords: Multinomial discrete choice model Dirichlet process prior Non-conjugate priors Hierarchical latent class models a b s t r a c tIn this paper, we introduce a new flexible mixed model for multinomial discrete choice where the key individual-and alternative-specific parameters of interest are allowed to follow an assumptionfree nonparametric density specification, while other alternative-specific coefficients are assumed to be drawn from a multivariate Normal distribution, which eliminates the independence of irrelevant alternatives assumption at the individual level. A hierarchical specification of our model allows us to break down a complex data structure into a set of submodels with the desired features that are naturally assembled in the original system. We estimate the model, using a Bayesian Markov Chain Monte Carlo technique with a multivariate Dirichlet Process (DP) prior on the coefficients with nonparametrically estimated density. We employ a ''latent class'' sampling algorithm, which is applicable to a general class of models, including non-conjugate DP base priors. The model is applied to supermarket choices of a panel of Houston households whose shopping behavior was observed over a 24-month period in years 2004-2005. We estimate the nonparametric density of two key variables of interest: the price of a basket of goods based on scanner data, and driving distance to the supermarket based on their respective locations. Our semi-parametric approach allows us to identify a complex multi-modal preference distribution, which distinguishes between inframarginal consumers and consumers who strongly value either lower prices or shopping convenience.
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Terms of use:Documents in EconStor may be saved and copied for your personal and scholarly purposes.You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
In this paper we introduce a new Poisson mixture model for count panel data where the underlying Poisson process intensity is determined endogenously by consumer latent utility maximization over a set of choice alternatives. This formulation accommodates the choice and count in a single random utility framework with desirable theoretical properties. Individual heterogeneity is introduced through a random coefficient scheme with a flexible semiparametric distribution. We deal with the analytical intractability of the resulting mixture by recasting the model as an embedding of infinite sequences of scaled moments of the mixing distribution, and newly derive their cumulant representations along with bounds on their rate of numerical convergence. We further develop an efficient recursive algorithm for fast evaluation of the model likelihood within a Bayesian Gibbs sampling scheme. We apply our model to a recent household panel of supermarket visit counts. We estimate the nonparametric density of three key variables of interest-price, driving distance, and their interaction-while controlling for a range of consumer demographic characteristics. We use this econometric framework to assess the opportunity cost of time and analyze the interaction between store choice, trip frequency, search intensity, and household and store characteristics. We also conduct a counterfactual welfare experiment and compute the compensating variation for a 10% to 30% increase in Walmart prices.
SUMMARY In this paper, we introduce a Bayesian panel probit model with two flexible latent effects: first, unobserved individual heterogeneity that is allowed to vary in the population according to a nonparametric distribution; and second, a latent serially correlated common error component. In doing so, we extend the approach developed in Albert and Chib (Journal of the American Statistical Association 1993; 88: 669–679; in Bayesian Biostatistics, Berry DA, Stangl DK (eds), Marcel Dekker: New York, 1996), and in Chib and Carlin (Statistics and Computing 1999; 9: 17–26) by releasing restrictive parametric assumptions on the latent individual effect and eliminating potential spurious state dependence with latent time effects. The model is found to outperform more traditional approaches in an extensive series of Monte Carlo simulations. We then apply the model to the estimation of a patent equation using firm‐level data on research and development (R&D). We find a strong effect of technology spillovers on R&D but little evidence of product market spillovers, consistent with economic theory. The distribution of latent firm effects is found to have a multimodal structure featuring within‐industry firm clustering. Copyright © 2012 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.