Topology control in ad-hoc networks tries to lower node energy consumption by reducing transmission power and by confining interference, collisions and consequently retransmissions. Commonly low interference is claimed to be a consequence to sparseness of the resulting topology. In this paper we disprove this implication. In contrast to most of the related work-claiming to solve the interference issue by graph sparseness without providing clear argumentation or proofs-, we provide a concise and intuitive definition of interference. Based on this definition we show that most currently proposed topology control algorithms do not effectively constrain interference. Furthermore we propose connectivity-preserving and spanner constructions that are interference-minimal.
a c m s i g c o m m ABSTRACTIn recent years, academic literature has analyzed many attacks on network trace anonymization techniques. These attacks usually correlate external information with anonymized data and successfully de-anonymize objects with distinctive signatures. However, analyses of these attacks still underestimate the real risk of publishing anonymized data, as the most powerful attack against anonymization is traffic injection. We demonstrate that performing live traffic injection attacks against anonymization on a backbone network is not difficult, and that potential countermeasures against these attacks, such as traffic aggregation, randomization or field generalization, are not particularly effective. We then discuss tradeoffs of the attacker and defender in the so-called injection attack space. An asymmetry in the attack space significantly increases the chance of a successful de-anonymization through lengthening the injected traffic pattern. This leads us to re-examine the role of network data anonymization. We recommend a unified approach to data sharing, which uses anonymization as a part of a technical, legal, and social approach to data protection in the research and operations communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.