Endurance and strength training are established as distinct exercise modalities, increasing either mitochondrial density or myofibrillar units. Recent research, however, suggests that mitochondrial biogenesis is stimulated by both training modalities. To test the training "specificity" hypothesis, mitochondrial respiration was studied in permeabilized muscle fibers from 25 sedentary adults after endurance (ET) or strength training (ST) in normoxia or hypoxia [fraction of inspired oxygen (Fi(O(2))) = 21% or 13.5%]. Biopsies were taken from the musculus vastus lateralis, and cycle-ergometric incremental maximum oxygen uptake (VO(2max)) exercise tests were performed under normoxia, before and after the 10-wk training program. The main finding was a significant increase (P < 0.05) of fatty acid oxidation capacity per muscle mass, after endurance and strength training under normoxia [2.6- and 2.4-fold for endurance training normoxia group (ET(N)) and strength training normoxia group (ST(N)); n = 8 and 3] and hypoxia [2.0-fold for the endurance training hypoxia group (ET(H)) and strength training hypoxia group (ST(H)); n = 7 and 7], and higher coupling control of oxidative phosphorylation. The enhanced lipid oxidative phosphorylation (OXPHOS) capacity was mainly (87%) due to qualitative mitochondrial changes increasing the relative capacity for fatty acid oxidation (P < 0.01). Mitochondrial tissue-density contributed to a smaller extent (13%), reflected by the gain in muscle mass-specific respiratory capacity with a physiological substrate cocktail (glutamate, malate, succinate, and octanoylcarnitine). No significant increase was observed in mitochondrial DNA (mtDNA) content. Physiological OXPHOS capacity increased significantly in ET(N) (P < 0.01), with the same trend in ET(H) and ST(H) (P < 0.1). The limitation of flux by the phosphorylation system was diminished after training. Importantly, key mitochondrial adaptations were similar after endurance and strength training, regardless of normoxic or hypoxic exercise. The transition from a sedentary to an active lifestyle induced muscular changes of mitochondrial quality representative of mitochondrial health.
BackgroundThere is limited knowledge on epidemiological injury data in judo.ObjectiveTo systematically review scientific literature on the frequency and characteristics of injuries in judo.MethodsThe available literature up to June 2013 was searched for prospective as well as retrospective studies on injuries in judo. Data extraction and presentation focused on the incidence rate, injury risk, types, location and causes of injuries.ResultsDuring the Olympic Games in 2008 and 2012, an average injury risk of about 11–12% has been observed. Sprains, strains and contusions, usually of the knee, shoulder and fingers, were the most frequently reported injuries, whereas being thrown was the most common injury mechanism. Severe injuries were quite rare and usually affected the brain and spine, whereas chronic injuries typically affected the finger joints, lower back and ears. The most common types of injuries in young judo athletes were contusions/abrasions, fractures and sprains/strains. Sex-differences data on judo injuries were mostly inconsistent. Some studies suggested a relationship between nutrition, hydration and/or weight cycling and judo injuries. Also, psychological factors may increase the risk of judo injuries.ConclusionsThe present review provides the latest knowledge on the frequency and characteristics of injuries in judo. Comprehensive knowledge about the risk of injury during sport activity and related risk factors represents an essential basis to develop effective strategies for injury prevention. Thus, the introduction of an ongoing injury surveillance system in judo is of utmost importance.
In conclusion, soccer players belong to a specific population. Muscle mass and function, as indicated by BCM and phase angle, increase with increasing performance level. The soccer-specific tolerance ellipses might be used for classifying individual vectors and to define target regions for low-level players.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.