We consider the accurate estimation of total causal effects in the presence of unmeasured confounding using conditional instrumental sets. Specifically, we consider the two-stage least squares estimator in the setting of a linear structural equation model with correlated errors that is compatible with a known acyclic directed mixed graph. To set the stage for our results, we fully characterise the class of conditional instrumental sets that result in a consistent two-stage least squares estimator for our target total effect. We refer to members of this class as valid conditional instrumental sets. Equipped with this definition, we provide three graphical tools for selecting accurate and valid conditional instrumental sets: First, a graphical criterion that for certain pairs of valid conditional instrumental sets identifies which of the two corresponding estimators has the smaller asymptotic variance. Second, a forward algorithm that greedily adds covariates that reduce the asymptotic variance to a valid conditional instrumental set. Third, a valid conditional instrumental set for which the corresponding estimator has the smallest asymptotic variance we can ensure with a graphical criterion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.