The PubMLST.org website hosts a collection of open-access, curated databases that integrate population sequence data with provenance and phenotype information for over 100 different microbial species and genera. Although the PubMLST website was conceived as part of the development of the first multi-locus sequence typing (MLST) scheme in 1998 the software it uses, the Bacterial Isolate Genome Sequence database (BIGSdb, published in 2010), enables PubMLST to include all levels of sequence data, from single gene sequences up to and including complete, finished genomes. Here we describe developments in the BIGSdb software made from publication to June 2018 and show how the platform realises microbial population genomics for a wide range of applications. The system is based on the gene-by-gene analysis of microbial genomes, with each deposited sequence annotated and curated to identify the genes present and systematically catalogue their variation. Originally intended as a means of characterising isolates with typing schemes, the synthesis of sequences and records of genetic variation with provenance and phenotype data permits highly scalable (whole genome sequence data for tens of thousands of isolates) means of addressing a wide range of functional questions, including: the prediction of antimicrobial resistance; likely cross-reactivity with vaccine antigens; and the functional activities of different variants that lead to key phenotypes. There are no limitations to the number of sequences, genetic loci, allelic variants or schemes (combinations of loci) that can be included, enabling each database to represent an expanding catalogue of the genetic variation of the population in question. In addition to providing web-accessible analyses and links to third-party analysis and visualisation tools, the BIGSdb software includes a RESTful application programming interface (API) that enables access to all the underlying data for third-party applications and data analysis pipelines.
Some of the most common infectious diseases are caused by bacteria that naturally colonise humans asymptomatically. Combating these opportunistic pathogens requires an understanding of the traits that differentiate infecting strains from harmless relatives. Staphylococcus epidermidis is carried asymptomatically on the skin and mucous membranes of virtually all humans but is a major cause of nosocomial infection associated with invasive procedures. Here we address the underlying evolutionary mechanisms of opportunistic pathogenicity by combining pangenome-wide association studies and laboratory microbiology to compare S. epidermidis from bloodstream and wound infections and asymptomatic carriage. We identify 61 genes containing infection-associated genetic elements (k-mers) that correlate with in vitro variation in known pathogenicity traits (biofilm formation, cell toxicity, interleukin-8 production, methicillin resistance). Horizontal gene transfer spreads these elements, allowing divergent clones to cause infection. Finally, Random Forest model prediction of disease status (carriage vs. infection) identifies pathogenicity elements in 415 S. epidermidis isolates with 80% accuracy, demonstrating the potential for identifying risk genotypes pre-operatively.
BACKGROUND The meningococcal group B vaccine 4CMenB is a new, recombinant protein-based vaccine that is licensed to protect against invasive group B meningococcal disease. However, its role in preventing transmission and, therefore, inducing population (herd) protection is uncertain. METHODS We used cluster randomization to assign, according to school, students in years 10 to 12 (age, 15 to 18 years) in South Australia to receive 4CMenB vaccination either at baseline (intervention) or at 12 months (control). The primary outcome was oropharyngeal carriage of disease-causing Neisseria meningitidis (group A, B, C, W, X, or Y) in students in years 10 and 11, as identified by polymerase-chain-reaction assays for PorA (encoding porin protein A) and N. meningitidis genogroups. Secondary outcomes included carriage prevalence and acquisition of all N. meningitidis and individual disease-causing genogroups. Risk factors for carriage were assessed at baseline. RESULTS A total of 237 schools participated. During April through June 2017, a total of 24,269 students in years 10 and 11 and 10,220 students in year 12 were enrolled. At 12 months, there was no difference in the prevalence of carriage of disease-causing N. meningitidis between the vaccination group (2.55%; 326 of 12,746) and the control group (2.52%; 291 of 11,523) (adjusted odds ratio, 1.02; 95% confidence interval [CI], 0.80 to 1.31; P = 0.85). There were no significant differences in the secondary carriage outcomes. At baseline, the risk factors for carriage of disease-causing N. meningitidis included later year of schooling (adjusted odds ratio for year 12 vs. year 10, 2.75; 95% CI, 2.03 to 3.73), current upper respiratory tract infection (adjusted odds ratio, 1.35; 95% CI, 1.12 to 1.63), cigarette smoking (adjusted odds ratio, 1.91; 95% CI, 1.29 to 2.83), water-pipe smoking (adjusted odds ratio, 1.82; 95% CI, 1.30 to 2.54), attending pubs or clubs (adjusted odds ratio, 1.54; 95% CI, 1.28 to 1.86), and intimate kissing (adjusted odds ratio, 1.65; 95% CI, 1.33 to 2.05). No vaccine safety concerns were identified. CONCLUSIONS Among Australian adolescents, the 4CMenB vaccine had no discernible effect on the carriage of disease-causing meningococci, including group B. (Funded by GlaxoSmith-Kline; ClinicalTrials.gov number, NCT03089086.
Of 830 Neisseria meningitidis isolates obtained from healthy carriers in Bavaria, Germany, 136 (164 %) lacked the operons necessary for the synthesis, lipid modification, and transport of capsular polysaccharide. These operons were replaced by a non-coding intergenic region either 113 or 114 bp in length, termed here the capsule null locus (cnl). Comparisons of the nucleotide sequence of this region in the meningococcus and its acapsulate relatives, Neisseria gonorrhoeae and Neisseria lactamica, revealed six distinct sequence variants (cnl-1 to cnl-6), with a total of 10 nucleotide substitutions and three indels. With the exception of one 4 bp insertion, which was unique to a gonococcal isolate, all of the individual sequence changes were present in the N. lactamica isolates examined. The meningococcal isolates with a cnl belonged to one of four otherwise genetically diverse genetic groupings : the ST-53 and ST-1117 complexes (75 isolates) ; the ST-845 complex (12 isolates) ; the ST-198 and 1136 complexes (46 isolates), and the ST-44 complex (one isolate).These data demonstrated that a substantial proportion of carried meningococci were incapable of capsule production, that the cnl circulated within Neisseria populations by horizontal genetic exchange, and that the expression of a polysaccharide capsule was not a requirement for person-to-person transmission of certain meningococcal lineages.Keywords : Neisseria meningitidis, multilocus sequence typing, transmission, capsule null locus INTRODUCTIONThe causative organism of meningococcal disease, Neisseria meningitidis, is primarily a commensal bacterium which can be cultured from up to 40 % of human nasopharyngeal swab samples (Broome, 1986). This figure, which is likely to be an underestimate of the actual carriage rate (Sim et al., 2000), is dependent on a number of factors particular to the individuals sampled, including age and social status, together with population factors such as geographical location and climatic conditions (Rosenstein et al., 2001 The GenBank accession number for the sequence of the cnl-1 allele is AJ308327.species being harmless inhabitants of the mucosal surfaces of animals and humans (Morse & Knapp, 1992). Within the genus, the expression of a capsular polysaccharide is unique to N. meningitidis, and it is tempting to speculate that the acquisition of the genetic material necessary for the expression of a capsule was an important step in the evolution of the meningococcus from other Neisseria species.Immunochemical differences among meningococcal capsules define the serogroups of the organism (Vedros, 1987). Five of the 13 recognized capsular polysaccharides, those conferring serogroups A, B, C, W-135 and Y, can be thought of as virulence determinants, as virtually all meningococcal disease is caused by organisms expressing one of these capsular antigens (Poolman et al., 1995). These capsules are capable of protecting the bacterium against opsonophagocytosis during disseminated infection (Kahler et al., 1998 ; Masson & Holbein, 1985...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.