Sleep is a key phenomenon to both understanding, diagnosing and treatment of many illnesses, as well as for studying health and well being in general. Today, the only widely accepted method for clinically monitoring sleep is the polysomnography (PSG), which is, however, both expensive to perform and influences the sleep. This has led to investigations into light weight electroencephalography (EEG) alternatives. However, there has been a substantial performance gap between proposed alternatives and PSG. Here we show results from an extensive study of 80 full night recordings of healthy participants wearing both PSG equipment and ear-EEG. We obtain automatic sleep scoring with an accuracy close to that achieved by manual scoring of scalp EEG (the current gold standard), using only ear-EEG as input, attaining an average Cohen’s kappa of 0.73. In addition, this high performance is present for all 20 subjects. Finally, 19/20 subjects found that the ear-EEG had little to no negative effect on their sleep, and subjects were generally able to apply the equipment without supervision. This finding marks a turning point on the road to clinical long term sleep monitoring: the question should no longer be whether ear-EEG could ever be used for clinical home sleep monitoring, but rather when it will be.
This paper presents a novel automatic method for detection of B-lines (comet-tail artifacts) in lung ultrasound scans. B-lines are the most commonly used artifacts for analyzing the pulmonary edema. They appear as laser-like vertical beams, which arise from the pleural line and spread down without fading to the edge of the screen. An increase in their number is associated with presence of edema. All the scans used in this study were acquired using a BK3000 ultrasound scanner (BK Ultrasound, Denmark) driving a 192-element 5.5 MHz wide linear transducer (10L2W, BK Ultrasound). The dynamic received focus technique was employed to generate the sequences. Six subjects, among those three patients after major surgery and three normal subjects, were scanned once and Six ultrasound sequences each containing 50 frames were acquired. The proposed algorithm was applied to all 300 in-vivo lung ultrasound images. The pleural line is first segmented on each image and then the B-line artifacts spreading down from the pleural line are detected and overlayed on the image. The resulting 300 images showed that the mean lateral distance between B-lines detected on images acquired from patients decreased by 20% in compare with that of normal subjects. Therefore, the method can be used as the basis of a method of automatically and qualitatively characterizing the distribution of B-lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.