In this study, we modelled and compared lactation curves of efficiency of crude protein utilisation (ECPU) and the nitrogen (N) excreta partitioning of milking cows of two contrasting spring-calving pasture-based herds to test some aspects of farming intensification practices on cow performance and N partition. In the low-intensity production system (LIPS), 257 cows were milked once-daily and fed diets comprised of pasture with low supplementary feed inclusion during lactation (304 kg pasture silage/cow). In the high-intensity production system (HIPS), 207 cows were milked twice-daily and fed pasture with higher supplementary feed inclusion (429 kg pasture silage and 1695 kg concentrate/cow). The dietary crude protein (CP) utilisation was calculated for each cow at every herd test date as the ECPU as a proportion of protein yield (PY) from the CP intake (CPI) derived from intake assessments based on metabolisable energy requirements, and the CP balance (CPB) calculated as the difference between CPI and PY. Total N excreta partitioned to faeces (FN) and urine (UN) was estimated by back-calculating UN from FN, considering dietary N, and from N retained in body tissues, taking into account live weight change during the lactation. The higher CPI (2.7 vs. 2.5 kg CP/day), along with the reduced milk yield (1100 kg milk/cow less), of the LIPS cows led to a lower ECPU (23% vs. 31%) and to a higher CPB (2.1 vs. 1.8 kg CP/day) when compared to the HIPS cows. Mean N excreta, and particularly UN, was significantly higher in LIPS cows, and this was explained by higher dietary CP and by the reduced PY when compared to the HIPS cows. Reducing the low-CP supplementation in the “de-intensified” herd lessened the ECPU, resulting in higher UN, which is sensitive in terms of body water eutrophication.
The objectives of this study were two-fold. Firstly, to estimate the likely correlated responses in milk urea nitrogen (MUN) concentration, lactation yields of milk (MY), fat (FY) and crude protein (CPY) and mature cow liveweight (LWT) under three selection scenarios which varied in relative emphasis for MUN; 0% relative emphasis (MUN0%: equivalent to current New Zealand breeding worth index), and sign of the economic value; 20% relative emphasis positive selection (MUN+20%), and 20% relative emphasis negative selection (MUN−20%). Secondly, to estimate for these three scenarios the likely change in urinary nitrogen (UN) excretion under pasture based grazing conditions. The predicted genetic responses per cow per year for the current index were 16.4 kg MY, 2.0 kg FY, 1.4 kg CPY, −0.4 kg LWT and −0.05 mg/dL MUN. Positive selection on MUN in the index resulted in annual responses of 23.7 kg MY, 2.0 kg FY, 1.4 kg CPY, 0.6 kg LWT and 0.10 mg/dL MUN, while negative selection on MUN in the index resulted in annual responses of 5.4 kg MY, 1.6 kg FY, 1.0 kg CPY, −1.1 kg LWT and −0.17 mg/dL MUN. The MUN−20% reduced both MUN and cow productivity, whereas the MUN+20% increased MUN, milk production and LWT per cow. Per cow dry matter intake (DMI) was increased in all three scenarios as milk production increased compared to base year, therefore stocking rate (SR) was adjusted to control pasture cover. Paradoxically, ten years of selection with SR adjusted to maintain annual feed demand under the MUN+20% actually reduced per ha UN excretion by 3.54 kg, along with increases of 63 kg MY, 26 kg FY and 16 kg CPY compared to the base year. Ten years of selection on the MUN0% index generated a greater reductions of 10.45 kg UN and 30 kg MY, and increases of 32 kg FY and 21 kg CPY per ha, whereas the MUN−20% index reduced 14.06 kg UN and 136 kg MY with increases of 32 kg FY and 18 kg CPY compared to base year. All three scenarios increased partitioning of nitrogen excreted as feces. The selection index that excluded MUN was economically beneficial in the current economic circumstances over selection indices including MUN regardless of whether selection was either for or against MUN. There was no substantial benefit from an environmental point of view from including MUN in the Breeding Worth index, because N leaching is more a function of SR rather than of individual cow UN excretion. This study demonstrates that attention needs to be paid to the whole system consequences of selection for environmental outcomes in pastoral grazing circumstances.
The objective of this study was to identify genomic regions associated with milk fat percentage (FP), crude protein percentage (CPP), urea concentration (MU) and efficiency of crude protein utilization (ECPU: ratio between crude protein yield in milk and dietary crude protein intake) using grazing, mixed-breed, dairy cows in New Zealand. Phenotypes from 634 Holstein Friesian, Jersey or crossbred cows were obtained from two herds at Massey University. A subset of 490 of these cows was genotyped using Bovine Illumina 50K SNP-chips. Two genome-wise association approaches were used, a single-locus model fitted to data from 490 cows and a single-step Bayes C model fitted to data from all 634 cows. The single-locus analysis was performed with the Efficient Mixed-Model Association eXpedited model as implemented in the SVS package. Single nucleotide polymorphisms (SNPs) with genome-wide association p-values ≤ 1.11 × 10−6 were considered as putative quantitative trait loci (QTL). The Bayes C analysis was performed with the JWAS package and 1-Mb genomic windows containing SNPs that explained > 0.37% of the genetic variance were considered as putative QTL. Candidate genes within 100 kb from the identified SNPs in single-locus GWAS or the 1-Mb windows were identified using gene ontology, as implemented in the Ensembl Genome Browser. The genes detected in association with FP (MGST1, DGAT1, CEBPD, SLC52A2, GPAT4, and ACOX3) and CPP (DGAT1, CSN1S1, GOSR2, HERC6, and IGF1R) were identified as candidates. Gene ontology revealed six novel candidate genes (GMDS, E2F7, SIAH1, SLC24A4, LGMN, and ASS1) significantly associated with MU whose functions were in protein catabolism, urea cycle, ion transportation and N excretion. One novel candidate gene was identified in association with ECPU (MAP3K1) that is involved in post-transcriptional modification of proteins. The findings should be validated using a larger population of New Zealand grazing dairy cows.
Milk urea nitrogen content is moderately heritable and is phenotypically related to urine nitrogen (UN). Based on this relationship, it has been suggested that genetic selection for lower milk urea nitrogen in grazing dairy cows could decrease UN concentration thereby reducing nitrogen excretions into the ground. The objective of this study was to compare the nitrogen use efficiency (NUE) and excretion in grazing cows with high and low milk urea nitrogen breeding values (MUNBV) in two farms of contrasting farming intensity. On the high-intensity farm (HIF) 68 and 70 cows with low and high MUNBV, respectively, were fed higher levels of supplementation and milked twice-daily, while on the low-intensity farm (LIF) 82 and 86 cows with low and high MUNBV, respectively, were fed lower levels of supplementation milked once-daily. Nitrogen use efficiency (g/g) was calculated as the ratio of daily milk N to daily N intake. Daily N intake (g/day) was derived from feed intake estimates based on energy requirements. The UN (g/day) was estimated by back-calculation from dietary N and subtracting milk N, faecal N, and N retained in body tissues. Irrespective of farm, cows with low MUNBV had significantly lower MY and milk urea nitrogen (p < 0.001) but this was not linked to significantly less UN. In the LIF, cows with low MUNBV had lower NUE (p < 0.001) than cows with high MUNBV, and this was explained by the reduced protein yield (p < 0.001). Selecting cows for low MUNBV was not an effective tool to reduce N losses and to increase the NUE in two dairy farms of contrasting farming intensity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.