An experimental and numerical analysis of cycling aerodynamics is presented. The cyclist is modeled experimentally by a mannequin at static crank angle; numerically, the cyclist is modeled using a computer aided design (CAD) reproduction of the geometry. Wind tunnel observation of the flow reveals a large variation of drag force and associated downstream flow structure with crank angle; at a crank angle of 15 deg, where the two thighs of the rider are aligned, a minimum in drag is observed. At a crank angle of 75 deg, where one leg is at full extension and the other is raised close to the torso, a maximum in drag is observed. Simulation of the flow using computational fluid dynamics (CFD) reproduces the observed variation of drag with crank angle, but underpredicts the experimental drag measurements by approximately 15%, probably at least partially due to simplification of the geometry of the cyclist and bicycle. Inspection of the wake flow for the two sets of results reveals a good match in the downstream flow structure. Numerical simulation also reveals the transient nature of the entire flow field in greater detail. In particular, it shows how the flow separates from the body of the cyclist, which can be related to changes in the overall drag.
Steady inlet flow through a circular tube with an axisymmetric blockage of varying size is studied both numerically and experimentally. The geometry consists of a long, straight tube and a blockage, semicircular in cross-section, serving as a simplified model of an arterial stenosis. The stenosis is characterized by a single parameter, the aim being to highlight fundamental behaviours of constricted flows, in terms of the total blockage. The Reynolds number is varied between 50 and 2500 and the stenosis degree by area between 0.20 and 0.95. Numerically, a spectral-element code is used to obtain the axisymmetric base flow fields, while experimentally, results are obtained for a similar set of geometries, using water as the working fluid. At low Reynolds numbers, the flow is steady and characterized by a jet flow emanating from the contraction, surrounded by an axisymmetric recirculation zone. The effect of a variation in blockage size on the onset and mode of instability is investigated. Linear stability analysis is performed on the simulated axisymmetric base flows, in addition to an analysis of the instability, seemingly convective in nature, observed in the experimental flows. This transition at higher Reynolds numbers to a time-dependent state, characterized by unsteadiness downstream of the blockage, is studied in conjunction with an investigation of the response of steady lower Reynolds number flows to periodic forcing.
OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. A numerical study of the flow-induced vibration of two elastically mounted cylinders in tandem and staggered arrangements at Reynolds number Re = 200 is presented. The cylinder centres are set at a streamwise distance of 1.5 cylinder diameters, placing the rear cylinder in the near-wake region of the front cylinder for the tandem arrangement. The cross-stream or lateral offset is varied between 0 and 5 cylinder diameters. The two cylinders are identical, with the same elastic mounting, and constrained to oscillate only in the cross-flow direction. The variation of flow behaviours is examined for static cylinders and for elastic mountings of a range of spring stiffnesses, or reduced velocity. At least seven major modes of flow response are identified, delineated by whether the oscillation is effectively symmetric, and the strength of the influence of the flow through the gap between the two cylinders. Submodes of these are also identified based on whether or not the flow remains periodic. More subtle temporal behaviours, such as period doubling, quasi-periodicity and chaos, are also identified and mapped. Across all of these regimes, the amplitudes of vibration and the magnitude of the fluid forces are quantified. The modes identified span the parameter space between two important limiting cases: two static bodies at varying lateral offset; and two elastically mounted bodies in a tandem configuration at varying spring stiffnesses. Some similarity in the response of extremely stiff or static bodies and extremely slack bodies is shown. This is explained by the fact that the slack bodies are free to move to an equilibrium position and stop, effectively becoming a static system. However, the most complex behaviour appears between these limits, when the bodies are in reasonably close proximity, and the natural structural frequency is close to the vortex shedding frequency of a single cylinder. This appears to be driven by the interplay between a series of time scales, including the vortex formation time, the advection time across the gap between the cylinders and the oscillation period of both bodies. This points out an important difference between this multi-body system and the classic single-cylinder vortex-induced vibration: two bodies in close proximity will not oscillate in a synchronised, periodic manner when their natural structural frequencies are close to the nominal vortex shedding frequency of a single cylinder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.