SummaryBackgroundTuberculosis incidence in the UK has risen in the past decade. Disease control depends on epidemiological data, which can be difficult to obtain. Whole-genome sequencing can detect microevolution within Mycobacterium tuberculosis strains. We aimed to estimate the genetic diversity of related M tuberculosis strains in the UK Midlands and to investigate how this measurement might be used to investigate community outbreaks.MethodsIn a retrospective observational study, we used Illumina technology to sequence M tuberculosis genomes from an archive of frozen cultures. We characterised isolates into four groups: cross-sectional, longitudinal, household, and community. We measured pairwise nucleotide differences within hosts and between hosts in household outbreaks and estimated the rate of change in DNA sequences. We used the findings to interpret network diagrams constructed from 11 community clusters derived from mycobacterial interspersed repetitive-unit–variable-number tandem-repeat data.FindingsWe sequenced 390 separate isolates from 254 patients, including representatives from all five major lineages of M tuberculosis. The estimated rate of change in DNA sequences was 0·5 single nucleotide polymorphisms (SNPs) per genome per year (95% CI 0·3–0·7) in longitudinal isolates from 30 individuals and 25 families. Divergence is rarely higher than five SNPs in 3 years. 109 (96%) of 114 paired isolates from individuals and households differed by five or fewer SNPs. More than five SNPs separated isolates from none of 69 epidemiologically linked patients, two (15%) of 13 possibly linked patients, and 13 (17%) of 75 epidemiologically unlinked patients (three-way comparison exact p<0·0001). Genetic trees and clinical and epidemiological data suggest that super-spreaders were present in two community clusters.InterpretationWhole-genome sequencing can delineate outbreaks of tuberculosis and allows inference about direction of transmission between cases. The technique could identify super-spreaders and predict the existence of undiagnosed cases, potentially leading to early treatment of infectious patients and their contacts.FundingMedical Research Council, Wellcome Trust, National Institute for Health Research, and the Health Protection Agency.
The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) substantially challenges TB control, especially in the European Region of the World Health Organization, where the highest prevalence of MDR/XDR cases is reported. The current management of patients with MDR/XDR-TB is extremely complex for medical, social and public health systems. The treatment with currently available anti-TB therapies to achieve relapse-free cure is long and undermined by a high frequency of adverse drug events, suboptimal treatment adherence, high costs and low treatment success rates. Availability of optimal management for patients with MDR/XDR-TB is limited even in the European Region. In the absence of a preventive vaccine, more effective diagnostic tools and novel therapeutic interventions the control of MDR/XDR-TB will be extremely difficult. Despite recent scientific advances in MDR/XDR-TB care, decisions for the management of patients with MDR/XDR-TB and their contacts often rely on expert opinions, rather than on clinical evidence.This document summarises the current knowledge on the prevention, diagnosis and treatment of adults and children with MDR/XDR-TB and their contacts, and provides expert consensus recommendations on questions where scientific evidence is still lacking.
HIV infection had an unexpectedly large association with the outcome of falciparum malaria in a region of unstable transmission. Both diseases are widespread in Africa and these results add to the body of knowledge suggesting an interaction of significant public health importance between HIV and malaria in Africa.
To investigate transmission of human herpesvirus (HHV)-8, 2546 mother-child pairs were recruited from rural clinics in South Africa and were tested for antibodies against lytic and latent HHV-8 antigens. The prevalence of antibodies in children increased with increasing maternal antibody titer (lytic, chi 21=26, and P<.001; latent, chi 21=55, and P<.001). HHV-8 DNA was detectable in 145 of 978 maternal saliva samples (mean virus load, 488,450 copies/mL; range, 1550-660,000 copies/mL) and in 12 of 43 breast-milk samples (mean virus load, 5800 copies/mL; range, 1550-12,540 copies/mL). The prevalence of HHV-8 DNA in maternal saliva was unrelated to latent anti-HHV-8 antibody status but was higher in mothers with the highest titers of lytic antibodies than in other mothers (34% vs. 8%; P<.001). The prevalence of lytic anti-HHV-8 antibodies in children was 13% (70/528) if the mother did not have HHV-8 in saliva and was 29% (8/28) if the mother had a high HHV-8 load (>50,000 copies/mL) in saliva (odds ratio, 2.6; 95% confidence interval, 1.1-6.2). The presence of HHV-8 DNA in maternal saliva was unrelated to latent antibodies in children. Saliva could be a route of transmission of HHV-8 from person to person, although other routes cannot be ruled out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.