We address the problem of completing partial human shape observations as obtained with a depth camera. Existing methods that solve this problem can provide robustness, with for instance model-based strategies that rely on parametric human models, or precision, with learning approaches that can capture local geometric patterns using implicit neural representations. We investigate how to combine both properties with a novel pyramidal spatio-temporal learning model. This model exploits neural signed distance fields in a coarse-to-fine manner, this in order to benefit from the ability of implicit neural representations to preserve local geometry details while enforcing more global spatial consistency for the estimated shapes through features at coarser levels. In addition, our model also leverages temporal redundancy with spatiotemporal features that integrate information over neighboring frames. Experiments on standard datasets show that both the coarse-to-fine and temporal aggregation strategies contribute to outperform the state-ofthe-art methods on human shape completion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.