A wide variety of metal borohydrides, MBH, have been discovered and characterized during the past decade, revealing an extremely rich chemistry including fascinating structural flexibility and a wide range of compositions and physical properties. Metal borohydrides receive increasing interest within the energy storage field due to their extremely high hydrogen density and possible uses in batteries as solid state ion conductors. Recently, new types of physical properties have been explored in lanthanide-bearing borohydrides related to solid state phosphors and magnetic refrigeration. Two major classes of metal borohydride derivatives have also been discovered: anion-substituted compounds where the complex borohydride anion, BH, is replaced by another anion, i.e. a halide or amide ion; and metal borohydrides modified with neutral molecules, such as NH, NHBH, NH, etc. Here, we review new synthetic strategies along with structural, physical and chemical properties for metal borohydrides, revealing a number of new trends correlating composition, structure, bonding and thermal properties. These new trends provide general knowledge and may contribute to the design and discovery of new metal borohydrides with tailored properties towards the rational design of novel functional materials. This review also demonstrates that there is still room for discovering new combinations of light elements including boron and hydrogen, leading to complex hydrides with extreme flexibility in composition, structure and properties.
Hydrogen is recognized as a possible future energy carrier, which can be produced from renewable energy and water. A major challenge in a future ‘hydrogen economy’ is the development of safe, compact, robust, and efficient means of hydrogen storage, in particular for mobile applications. The present review focuses on light metal boron based hydrides, for which the general interest has expanded significantly during the past few years. Synthesis methods, physical, chemical and structural properties of novel boron based hydrides are reviewed along with new approaches for improving kinetic and thermodynamic properties: (i) anion substitution, (ii) reactive hydride composites and (iii) nanoconfinement of hydrides and chemical reactions. The light metal borohydrides reveal a fascinating structural chemistry and have the potential for storing large amounts of hydrogen. A combination of the different approaches may provide a new route to a wide range of interesting energy storage materials in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.