Today bioenergy plays a major role in the renewable energy provision, for heat and power and for liquid biofuels as well. With an increasing share of renewables on the one hand side and a limited availability of biomass on the other hand, the provision of bioenergy has to consider the demands of the future energy system with high shares of fluctuating wind and solar power. This includes new and improved technologies and concepts for biogas, biomethane, and liquid and solid biofuels, which are discussed in the following, while for the electricity sector, the demand for more flexible provision might take place in the years to come; for more flexible heat provision, the transition is expected in a longer time frame. For their market implementation adopted regulatory framework and price signals from electricity markets are necessary. Review
SUMMARYBiogas plants enable power to be generated in a flexible way so that variable, renewable energy sources can be integrated into the energy system. In Germany, the Renewable Energy Sources Act promotes flexible power generation in biogas plants. Two existing biogas plants in flexible operation were analyzed with respect to economic viability and greenhouse gas (GHG) emissions to assess the feasibility of flexible operation. To do this, a biogas technology simulation model was developed to reproduce the technical design of both biogas plants and to link this design with twelve flexibilization scenarios. The evaluation of the economic viability is based on a discounting method of investment appraisal. For assessing the level of GHG emissions, the life cycle assessment method has been applied. The results show that the profitability of flexibilization is contingent upon premium payments promoting flexibility and direct sales resulting from a higher electrical efficiency of new or additionally installed combined heat and power units. Overall, with respect to profitability, the results of the flexible power generation scenarios are dependent upon the properties of the technical plant, such as its power generation and gas storage capacities. Relative GHG emissions from flexible biogas plants show significantly lower values than for referenced fossil gas-steam power stations. Among the various scenarios, the results reveal that the level of GHG emissions especially depends on the number of operating hours of the additional combined heat and power unit(s). The results of the analyzed biogas plants showed no direct correlation between GHG emissions and the economic benefits. Overall, a flexible power generation of biogas plants may improve the economic viability as well as result in lower GHG emissions in comparison with a conventional base load operation.
Wind and solar PV have become the lowest-cost alternatives for power generation in many countries and are expected to dominate the renewable power supply in many regions of the world. The temporal volatility in power production from these sources leads to new challenges for a stable and secure power supply system. Possible technologies to improve the integration of wind and solar PV are electrical energy storage and the flexible power provision by bioenergy. A third option is the system-friendly layout of wind and solar PV systems and the optimized mix of wind and solar PV capacities. To assess these different options at hand, a case study was conducted covering various scenarios for a regional power supply based on a high share of wind and solar PV. State-of-the-art concepts for all the stated technologies are modelled and a numerical optimization approach is applied on temporally-resolved time series data to identify the potential role of each option and their respective interactions. Power storage was found to be most relevant in solar dominated systems, due to the diurnal generation pattern, whereas bioenergy is more suitably combined with high wind power shares due to the less regular generation pattern. System-friendly wind and solar power can reduce the need for generation capacity and flexible options by fitting generation and demand patterns better.
Energy scenarios and roadmaps indicate that intermittent renewable energy sources such as wind power and solar photovoltaic (PV) will be crucial to the power supply in the future. However, this increases the demand for flexible power generation, particularly under conditions of insufficient wind and/or solar irradiation. Among the renewable energy sources, bioenergy offers multiple end-use in the form of power, fuel or heat. Biomass-based power combines the advantages of being renewable, exceptionally CO 2 neutral and supporting demand-oriented production.This chapter analyses four energy scenarios for Germany, focusing on the relevance of flexible bioenergy therein. Depending on how the scenarios are constructed, the range of biomass potential in the energy system is 1,180-1,700 PJ/a. The following sections of the chapter investigate the potential of flexible power generation from biomass on a regional scale (50 Hertz grid) starting with a description of the current state of bioenergy generation in the region and its potential for supplementary heat provision. We model the contribution of flexible biogas and solid biomass power using a minimization of daily residual load variance as a goal function. Two points in time are modeled -2011 and 2030 to include the current and projected
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.