This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
The cation-independent mannose 6-phosphate/insulin-like growth factor-2 receptor (M6P/IGF2R or IGF2R) traffics IGF2 and M6P ligands between pre-lysosomal and extra-cellular compartments. Specific IGF2 and M6P high-affinity binding occurs via domain-11 and domains-3-5-9, respectively. Mammalian maternal Igf2r allele expression exceeds the paternal allele due to imprinting (silencing). Igf2r null-allele maternal transmission results in placenta and heart over-growth and perinatal lethality (>90%) due to raised extra-cellular IGF2 secondary to impaired ligand clearance. It remains unknown if the phenotype is due to either ligand alone, or to both ligands. Here, we evaluate Igf2r specific loss-of-function of the domain-11 IGF2 binding site by replacing isoleucine with alanine in the CD loop (exon 34, I1565A), a mutation also detected in cancers. Igf2r I1565A /+ p maternal transmission (heterozygote), resulted in placental and embryonic over-growth with reduced neonatal lethality (<60%), and long-term survival. The perinatal mortality (>80%) observed in homozygotes ( Igf2r I1565A/I1565A ) suggested that wild-type paternal allele expression attenuates the heterozygote phenotype. To evaluate Igf2r tumour suppressor function, we utilised intestinal adenoma models known to be Igf2 dependent. Bi-allelic Igf2r expression suppressed intestinal adenoma ( Apc Min ). Igf2r I1565A /+ p in a conditional model ( Lgr5-Cre , Apc loxp/loxp ) resulted in worse survival and increased adenoma proliferation. Growth, survival and intestinal adenoma appear dependent on IGF2R - domain-11 IGF2 binding.
Summary The subventricular zone of the mammalian brain is the major source of adult born neurons. These neuroblasts normally migrate long distances to the olfactory bulbs but can be re-routed to locations of injury and promote neuroregeneration. Mechanistic understanding and pharmacological targets regulating neuroblast migration is sparse. Furthermore, lack of migration assays limits development of pharmaceutical interventions targeting neuroblast recruitment. We therefore developed a physiologically relevant 3D neuroblast spheroid migration assay that permits the investigation of large numbers of interventions. To verify the assay, 1,012 kinase inhibitors were screened for their effects on migration. Several induced significant increases or decreases in migration. MuSK and PIK3CB were selected as putative targets and their knockdown validated increased neuroblast migration. Thus, compounds identified through this assay system could be explored for their potential in augmenting neuroblast recruitment to sites of injury for neuroregeneration, or for decreasing malignant invasion.
Aims Gliomas are the most frequent brain tumours, representing 75% of all primary malignant brain tumours in adults. IDH1 (and IDH2) driver mutations occur in >80% of low grade gliomas and secondary GBMs, in <10% of primary GBMs and other cancers. How IDH1/2 mutations contribute to tumorigenesis is mostly unknown. IDH1/2 convert isocitrate to α-ketoglutarate, but when mutated possess a novel enzymatic function that reduces α-ketoglutarate to D2-hydroxyglutarate (2HG). Indeed 2HG accumulates in IDH1/2-mutant tumours, and this discovery suggested that 2HG may have a role in IDH1/2-mutant tumours onset and progression, possibly by causing dysregulations of various enzymes in the cells. Studies are undergoing to clarify the causative role of 2HG in IDH1/2-mutant tumours, but it is still not clear whether 2HG is the driver/oncometabolite. Our aim is to understand the role of 2HG in developing and adult mouse tissues and whether its accumulation might cause features of gliomagenesis. Method A constitutive D2hgdh Knock-out mouse (D2hgdh KO) was generated and the relative molecular and cellular analysis were performed. Results Brains dissected from D2hgdh KO mice appeared to be histologically normal. No differences were found in the proliferation and labelling retaining capacity of neural stem and progenitors cells (NSC/NPC) of the D2hgdh KO mice compared to controls. A comprehensive metabolites analysis showed that D2hgdh KO mouse accumulated 2HG in various organs and tissues, included total brains and in the NSC/NPC microdissected from the subventricular zone, the site of origin of many human gliomas. The DNA amount of 5mC and 5hmC extracted from brains of D2hgdh KO mice was similar to controls. A normal number of haematopoietic progenitors was also found. Conclusion Although D2hgdh KO mice accumulated 2HG in all tissues analysed, they did not develop any abnormalities and remained completely asymptomatic. This suggests that a mere increment of 2HG in developing and adult tissues may be not sufficient to cause tumorigenesis (and gliomagenesis), leading some doubts on the oncogenic roles of the 2HG in IDH1/2-mutant tumours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.