The anthrax pathogen Bacillus anthracis poses a significant threat to human health. Identification of B. anthracis is challenging because of the bacterium’s close genetic relationship to other Bacillus cereus group species. Thus, molecular detection is founded on species-specific PCR targeting single-copy genes. Here, we validated a previously recognized multi-copy target, a species-specific single nucleotide polymorphism (SNP) present in 2–5 copies in every B. anthracis genome analyzed. For this, a hydrolysis probe-based real-time PCR assay was developed and rigorously tested. The assay was specific as only B. anthracis DNA yielded positive results, was linear over 9 log10 units, and was sensitive with a limit of detection (LoD) of 2.9 copies/reaction. Though not exhibiting a lower LoD than established single-copy PCR targets (dhp61 or PL3), the higher copy number of the B. anthracis–specific 16S rRNA gene alleles afforded ≤2 unit lower threshold (Ct) values. To push the detection limit even further, the assay was adapted for reverse transcription PCR on 16S rRNA transcripts. This RT-PCR assay was also linear over 9 log10 units and was sensitive with an LoD of 6.3 copies/reaction. In a dilution series of experiments, the 16S RT-PCR assay achieved a thousand-fold higher sensitivity than the DNA-targeting assays. For molecular diagnostics, we recommend a real-time RT-PCR assay variant in which both DNA and RNA serve as templates (thus, no requirement for DNase treatment). This can at least provide results equaling the DNA-based implementation if no RNA is present but is superior even at the lowest residual rRNA concentrations.
The anthrax pathogen Bacillus anthracis poses a significant threat to human health. Identification of B. anthracis is challenging because of the bacterium’s close genetic relationship to other Bacillus cereus group species. Thus, molecular detection is founded on species-specific PCR targeting single-copy genes. Here, we validated a previously recognized multi-copy target, a species-specific SNP present in 2-5 copies in every B. anthracis genome analyzed. For this, a hydrolysis probe-based real time PCR assay was developed and rigorously tested. The assay was specific as only B. anthracis DNA yielded positive results, was linear over 9 log10 units and was sensitive with a limit of detection (LoD) of 2.9 copies/reaction. Though not exhibiting a lower LoD than established single copy PCR targets (dhp61 or PL3), the higher copy number of the B. anthracis–specific 16S rRNA gene allele afforded ≤2 unit lower threshold (Ct) values. To push the detection limit even further, the assay was adapted for reverse transcription PCR on 16S rRNA transcripts. This RT-PCR assay was also linear over 9 log10 units and was sensitive with a LoD of 6.3 copies/reaction. In a dilution-series of experiments, the 16S RT-PCR assay achieved a thousand-fold higher sensitivity than the DNA-targeting assays. For molecular diagnostics, we recommend a real time RT-PCR assay variant in which both DNA and RNA serve as templates (thus, no requirement for DNase treatment). This will at least provide results equaling the DNA-based implementation if no RNA is present but will be superior even at the lowest residual rRNA concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.