The cytokine thymic stromal lymphopoietin (TSLP) has been linked to human allergic inflammatory diseases. We show here that TSLP expression was increased in the lungs of mice with antigen-induced asthma, whereas TSLP receptor-deficient mice had considerably attenuated disease. Lung-specific expression of a Tslp transgene induced airway inflammation and hyperreactivity characterized by T helper type 2 cytokines and increased immunoglobulin E. The lungs of Tslp-transgenic mice showed massive infiltration of leukocytes, goblet cell hyperplasia and subepithelial fibrosis. TSLP was capable of activating bone marrow-derived dendritic cells to upregulate costimulatory molecules and produce the T helper type 2 cell-attracting chemokine CCL17. These findings suggest that TSLP is an important factor necessary and sufficient for the initiation of allergic airway inflammation.
It is widely accepted that T helper type 1 (T(H)1) cytokines such as interferon-gamma (IFN-gamma) antagonize allergic diseases mediated by T(H)2 cytokines. The 'hygiene hypothesis' has also proposed that decreased childhood exposure to pathogen-derived T(H)1 cytokines may underlie the recent increased prevalence of asthma, a T(H)2-mediated disease. We show here that influenza A viral infection, which induces large amounts of intrapulmonary IFN-gamma production, unexpectedly enhanced later allergen-specific asthma and promoted dual allergen-specific T(H)1 and T(H)2 responses. Pulmonary dendritic cells obtained from the lung after viral clearance and resolution of acute inflammation conferred enhanced allergic disease and concurrent T(H)1 and T(H)2 immune responses, and these effects were dependent on IFN-gamma secreted during the acute viral infection. Thus, respiratory viral infection and the acute T(H)1 response can positively regulate T(H)2-dependent allergic pulmonary disease in vivo, at least in part, by altering pulmonary dendritic cell function.
LPS potently induces dendritic cell maturation and the production of proinflammatory cytokines, such as IL-12, by activation of Toll-like receptor 4 (TLR4). Since IL-12 is important for the generation and maintenance of Th1 responses and may also inhibit Th2 cell generation from naive CD4 T cell precursors, it has been inferred that TLR4 signaling would have similar effects via the induction of IL-12 secretion. Surprisingly, we found that TLR4-defective mice subjected to sensitization and pulmonary challenge with a protein allergen had reductions in airway inflammation with eosinophils, allergen-specific IgE levels, and Th2 cytokine production, compared with wild-type mice. These reduced responses were attributable, at least in part, to decreased dendritic cell function: Dendritic cells from TLR4-defective mice expressed lower levels of CD86, a costimulatory molecule important for Th2 responses. They also induced less Th2 cytokine production by antigenically naive CD4 T cells in vitro and mediated diminished CD4 T cell Ag-specific pulmonary inflammation in vivo. These results indicate that TLR4 is required for optimal Th2 responses to Ags from nonpathogenic sources and suggest a role for TLR4 ligands, such as LPS derived from commensal bacteria or endogenously derived ligands, in maturation of the innate immune system before pathogen exposure.
Transient receptor potential ankyrin 1 (TRPA1) is a non-selective cation channel expressed in sensory neurons where it functions as an irritant sensor for a plethora of electrophilic compounds and is implicated in pain, itch, and respiratory disease. To study its function in various disease contexts, we sought to identify novel, potent, and selective small-molecule TRPA1 antagonists. Herein we describe the evolution of an N-isopropylglycine sulfonamide lead (1) to a novel and potent (4 R,5 S)-4-fluoro-5-methylproline sulfonamide series of inhibitors. Molecular modeling was utilized to derive low-energy three-dimensional conformations to guide ligand design. This effort led to compound 20, which possessed a balanced combination of potency and metabolic stability but poor solubility that ultimately limited in vivo exposure. To improve solubility and in vivo exposure, we developed methylene phosphate prodrug 22, which demonstrated superior oral exposure and robust in vivo target engagement in a rat model of AITC-induced pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.