Heat shock protein (HSP) synthesis is switched on in a remarkably wide range of tumor cells, in both experimental animal systems and in human cancer, in which these proteins accumulate in high levels. In each case, elevated HSP concentrations bode ill for the patient, and are associated with a poor outlook in terms of survival in most cancer types. The significance of elevated HSPs is underpinned by their essential roles in mediating tumor cell intrinsic traits such as unscheduled cell division, escape from programmed cell death and senescence, de novo angiogenesis, and increased invasion and metastasis. An increased HSP expression thus seems essential for tumorigenesis. Perhaps of equal significance is the pronounced interplay between cancer cells and the tumor milieu, with essential roles for intracellular HSPs in the properties of the stromal cells, and their roles in programming malignant cells and in the release of HSPs from cancer cells to influence the behavior of the adjacent tumor and infiltrating the normal cells. These findings of a triple role for elevated HSP expression in tumorigenesis strongly support the targeting of HSPs in cancer, especially given the role of such stress proteins in resistance to conventional therapies.
BackgroundHeat Shock Proteins (HSPs), a family of genes with key roles in proteostasis, have been extensively associated with cancer behaviour. However, the HSP family is quite large and many of its members have not been investigated in breast cancer (BRCA), particularly in relation with the current molecular BRCA classification. In this work, we performed a comprehensive transcriptomic study of the HSP gene family in BRCA patients from both The Cancer Genome Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohorts discriminating the BRCA intrinsic molecular subtypes.MethodsWe examined gene expression levels of 1097 BRCA tissue samples retrieved from TCGA and 1981 samples of METABRIC, focusing mainly on the HSP family (95 genes). Data were stratified according to the PAM50 gene expression (Luminal A, Luminal B, HER2, Basal, and Normal-like). Transcriptomic analyses include several statistical approaches: differential gene expression, hierarchical clustering and survival analysis.ResultsOf the 20,531 analysed genes we found that in BRCA almost 30% presented deregulated expression (19% upregulated and 10% downregulated), while of the HSP family 25% appeared deregulated (14% upregulated and 11% downregulated) (|fold change| > 2 comparing BRCA with normal breast tissues). The study revealed the existence of shared HSP genes deregulated in all subtypes of BRCA while other HSPs were deregulated in specific subtypes. Many members of the Chaperonin subfamily were found upregulated while three members (BBS10, BBS12 and CCTB6) were found downregulated. HSPC subfamily had moderate increments of transcripts levels. Various genes of the HSP70 subfamily were upregulated; meanwhile, HSPA12A and HSPA12B appeared strongly downregulated. The strongest downregulation was observed in several HSPB members except for HSPB1. DNAJ members showed heterogeneous expression pattern. We found that 23 HSP genes correlated with overall survival and three HSP-based transcriptional profiles with impact on disease outcome were recognized.ConclusionsWe identified shared and specific HSP genes deregulated in BRCA subtypes. This study allowed the recognition of HSP genes not previously associated with BRCA and/or any cancer type, and the identification of three clinically relevant clusters based on HSPs expression patterns with influence on overall survival.Electronic supplementary materialThe online version of this article (10.1186/s12885-018-4621-1) contains supplementary material, which is available to authorized users.
We argue that making accept/reject decisions on scientific hypotheses, including a recent call for changing the canonical alpha level from p = 0.05 to p = 0.005, is deleterious for the finding of new discoveries and the progress of science. Given that blanket and variable alpha levels both are problematic, it is sensible to dispense with significance testing altogether. There are alternatives that address study design and sample size much more directly than significance testing does; but none of the statistical tools should be taken as the new magic method giving clear-cut mechanical answers. Inference should not be based on single studies at all, but on cumulative evidence from multiple independent studies. When evaluating the strength of the evidence, we should consider, for example, auxiliary assumptions, the strength of the experimental design, and implications for applications. To boil all this down to a binary decision based on a p-value threshold of 0.05, 0.01, 0.005, or anything else, is not acceptable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.