Given a family of nonlinear control systems, where the Jacobian of the driver vector field at one equilibrium has a simple zero eigenvalue, with no other eigenvalues on the imaginary axis, we split it into two parts, one of them being a generic family, where it is possible to control the stationary bifurcations: saddle-node, transcritical and pitchfork bifurcations, and the other one being a non-generic family, where it is possible to control the transcritical and pitchfork bifurcations. The polynomial control laws designed are given in terms of the original control system. The center manifold theory is used to simplify the analysis to dimension one. Finally, the results obtained are applied to two underactuated mechanical systems: the pendubot and the pendulum of Furuta.
In this paper, we give the algebraic conditions that a configuration of 5 points in the plane must satisfy in order to be the configuration of zeros of a polynomial isochronous vector field. We use the obtained results to analyze configurations having some of its zeros satisfying some particular geometric conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.