In this paper we present an attack, which allows fraudulent transactions to be collected from EMV contactless credit and debit cards without the knowledge of the cardholder. The attack exploits a previously unreported vulnerability in EMV protocol, which allows EMV contactless cards to approve unlimited value transactions without the cardholder's PIN when the transaction is carried out in a foreign currency. For example, we have found that Visa credit cards will approve foreign currency transactions for any amount up to €999,999.99 without the cardholder's PIN, this side-steps the £20 contactless transaction limit in the UK. This paper outlines our analysis methodology that identified the flaw in the EMV protocol, and presents a scenario in which fraudulent transaction details are transmitted over the Internet to a "rogue merchant" who then uses the transaction data to take money from the victim's account. In reality, the criminals would choose a value between €100 and €200, which is low enough to be within the victim's balance and not to raise suspicion, but high enough to make each attack worthwhile. The attack is novel in that it could be operated on a large scale with multiple attackers collecting fraudulent transactions for a central rogue merchant which can be located anywhere in the world where EMV payments are accepted.
Contactless card payments are being introduced around the world allowing customers to use a card to pay for small purchases by simply placing the card onto the Point of Sale terminal. Contactless transactions do not require verification of the cardholder's PIN. However our research has found the redundant verify PIN functionality is present on the most commonly issued contactless credit and debit cards currently in circulation in the UK. This paper presents a plausible attack scenario which exploits contactless verify PIN to give unlimited attempts to guess the cardholder's PIN without their knowledge. It also gives experimental data to demonstrate the practical viability of the attack as well as references to support our argument that contactless verify PIN is redundant functionality which compromises the security of payment cards and the cardholder. AbstractContactless card payments are being introduced around the world allowing customers to use a card to pay for small purchases by simply placing the card onto the Point of Sale terminal. Contactless transactions do not require verification of the cardholder's PIN. However our research has found the redundant verify PIN functionality is present on the most commonly issued contactless credit and debit cards currently in circulation in the UK. This paper presents a plausible attack scenario which exploits contactless verify PIN to give unlimited attempts to guess the cardholder's PIN without their knowledge. It also gives experimental data to demonstrate the practical viability of the attack as well as references to support our argument that contactless verify PIN is redundant functionality which compromises the security of payment cards and the cardholder.
The EMVCo 3 organisation (i.e. MasterCard, Visa, etc.) protocols facilitate worldwide interoperability of secure electronic payments. Despite recent advances, it has proved difficult for academia to provide an acceptable solution to construction of secure applications within industry's constraints. In this paper, we describe a methodology we have applied to EMV1. It involves domain specific languages and verification tools targeting different analysis of interest. We are currently collaborating with EMVCo on their upcoming EMV R 2 nd Generation (EMV2) specifications.
Abstract.With the rapid growth and spread of Internet-based social support systems, the impact that these systems can make to society Ð be it good or bad Ð has become more significant and can make a real difference to peopleÕs lives. As such, various aspects of these systems need to be carefully investigated and analysed, including their security/privacy issues. In this paper, we present our work in designing and implementing various technological features that can be used to assist domestic violence survivors in obtaining help without leaving traces which might lead to further violence from their abuser. This case study serves as the core of our paper, in which we outline our approach, various design considerations Ð including difficulties in keeping browsing history private, our currently implemented solutions (single use URL, targeted history sanititation agent, and secret graphical gateway), as well as novel ideas for future work (including location-based service advertising and deployment in the wild).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.