Sliding friction between railway wheels and rails results in considerable contact temperatures and gives rise to severe thermal stresses at the surfaces of the wheels and rails. An approximate analytical solution is presented for a line contact model. The increased bulk temperature of the wheel after a long period of constant operating conditions is also taken into account. The thermal stresses have to be superimposed on the mechanical contact stresses. They reduce the elastic limit of the wheel and rail, and yielding begins at lower mechanical loads. When residual stresses build up during the initial cycles of plastic deformation, the structure can carry higher loads with a purely elastic response in subsequent load cycles. This phenomenon is referred to as shakedown. Due to the distribution of temperature, the rail surface is generally subjected to higher stresses than the wheel surface. This can cause structural changes in the rail material and hence rail damage.
Sliding friction between railway wheels and rails results in elevated contact temperatures and gives rise to severe thermal stresses at the wheel and rail surfaces. The thermal stresses have to be superimposed on the mechanical contact stresses. Due to the distribution of stresses, the rail surface is generally subjected to higher stresses than the wheel surface. The elastic limit is reduced and yield begins at lower mechanical loads. During the first cycles of plastic deformation, the material hardens and residual stresses build up. The residual stresses provide the structure to shake down to pure elastic behaviour in subsequent load cycles up to a shakedown limit. The kind of hardening observed for rail steel has a considerable influence on the shakedown limit. The shakedown limit is dropped to lower mechanical loads due to the thermal stresses in the rail surface as well. This might cause structural changes in the rail material and rail damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.