We study the effect of the edge disorder on the conductance of the graphene nanoribbons (GNRs). We find that only very modest edge disorder is sufficient to induce the conduction energy gap in the otherwise metallic GNRs and to lift any difference in the conductance between nanoribbons of different edge geometry. We relate the formation of the conduction gap to the pronounced edge disorder induced Anderson-type localization which leads to the strongly enhanced density of states at the edges, formation of surface-like states and to blocking of conductive paths through the ribbons.
A theoretical study of the transport properties of zigzag and armchair graphene nanoribbons with a magnetic barrier on top is presented. The magnetic barrier modifies the energy spectrum of the nanoribbons locally, which results in an energy shift of the conductance steps towards higher energies. The magnetic barrier also induces Fabry − Pérot type oscillations, provided the edges of the barrier are sufficiently sharp. The lowest propagating state present in zigzag and metallic armchair nanoribbons prevent confinement of the charge carriers by the magnetic barrier. Disordered edges in nanoribbons tend to localize the lowest propagating state, which get delocalized in the magnetic barrier region. Thus, in sharp contrast to the case of two-dimensional graphene, the charge carriers in graphene nanoribbons cannot be confined by magnetic barriers. We also present a novel method based on the Green's function technique for the calculation of the magnetosubband structure, Bloch states and magnetoconductance of the graphene nanoribbons in a perpendicular magnetic field. Utilization of this method greatly facilitates the conductance calculations, because, in contrast to excising methods, the present method does not require self-consistent calculations for the surface Green's function.
We propose a device based on an antidot embedded in a narrow quantum wire in the edge state regime, that can be used to inject and/or to control spin polarized current. The operational principle of the device is based on the effect of resonant backscattering from one edge state into another through a localized quasi-bound states, combined with the effect of Zeeman splitting of the quasibound states in sufficiently high magnetic field. We outline the device geometry, present detailed quantum-mechanical transport calculation and suggest a possible scheme to test the device performance and functionality
We demonstrate that the magnetoconductance of small lateral quantum dots in the stronglycoupled regime (i.e. when the leads can support one or more propagating modes) shows a pronounced splitting of the conductance peaks and dips which persists over a wide range of magnetic fields (from zero field to the edge-state regime) and is virtually independent of the magnetic field strength. Our numerical analysis of the conductance based on the Hubbard Hamiltonian demonstrates that this is essentially a many-body/spin effect that can be traced to a splitting of degenerate levels in the corresponding closed dot. The above effect in open dots can be regarded as a counterpart of the Coulomb blockade effect in weakly coupled dots, with the difference, however, that the splitting of the peaks originates from the interaction between the electrons of opposite spin.
The conductance of a quantum wire containing a single magnetic barrier is studied numerically by means of the recursive Greens function technique. For sufficiently strong and localized barriers, Fano - type reflection resonances are observed close to the pinch-off regime. They are attributed to a magnetoelectric vortex-type quasibound state inside the magnetic barrier that interferes with an extended mode outside. We furthermore show that disorder can substantially modify the residual conductance around the pinch-off regime.Comment: 7 pages, 5 figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.