Over the last ten years, low pressure plasma solutions for materials surface treatment have been remarkable. Nevertheless, the deposition of films with a uniform thickness on 3D complex shapes is still a challenge for various deposition systems. In several cases, concavities and different substrate orientations and motions lead to macroscopic shadowing and affect the thickness uniformity. The objective of this work is to describe a modelling method able to predict the layer thickness on any surface of 3D substrates in motion and subject to vapour transported in a low pressure vessel. The meshing of objects with Delaunay-triangulation enables the modelling of complex shapes. The deposition process consists of several Monte Carlo simulations involving first the computing of the angular and energy particles distribution from the source, second their transport through the chamber and last the deposition on a meshed substrate. The algorithm is optimised with a "cell-list-linked-like" method and differs from existing models by the computation speed. The benchmarking between simulation and experimental results for Cr, Ag and Ta deposition at various pressures and on moving complex substrates with several shadowed faces is presented. Moreover, particle energy distribution will be discussed for each sample surface, mode and pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.