Endoribonuclease E (RNase E) is a regulator of global gene expression in Escherichia coli and is the best studied member of the RNase E/G ribonuclease family. Homologues are present in other bacteria but the roles of plant RNase E/G-like proteins are not known. Arabidopsis thaliana contains a single nuclear gene (At2g04270) encoding a product with the conserved catalytic domain of RNase E/G-like proteins. At2g04270 and the adjacent At2g04280 gene form converging transcription units with a ∼40 base overlap at their 3’ ends. Several translation products were predicted from the analyses of At2g04270 cDNAs. An antibody raised against a recombinant A. thaliana RNase E/G-like protein recognized a 125 kDa protein band in purified chloroplast preparations fractionated by SDS-PAGE. The 125 kDa RNase E/G-like protein was detected in cotyledons, rosette and cauline leaves. T-DNA insertions in exon 6 or intron 11 of At2g04270 result in loss of the 125 kDa band or truncation to a 110 kDa band. Loss of At2g04270 function resulted in the arrest of chloroplast development, loss of autotrophic growth, and reduced plastid ribosomal, psbA and rbcL RNA levels. Homozygous mutant plants were pale-green, contained smaller plastids with fewer thylakoids and shorter granal stacks than wild-type chloroplasts, and required sucrose at all growth stages following germination right up to flowering and setting seeds. Recombinant A. thaliana RNase E/G-like proteins rescued an E. coli RNase E mutant and cleaved an rbcL RNA substrate. Expression of At2g04270 was highly correlated with genes encoding plastid polyribonucleotide phosphorylase, S1 RNA-binding, and CRS1/YhbY domain proteins.
SummaryHuman transforming growth factor-b3 (TGFb3) is a new therapeutic protein used to reduce scarring during wound healing. The active molecule is a nonglycosylated, homodimer comprised of 13-kDa polypeptide chains linked by disulphide bonds. Expression of recombinant human TGFb3 in chloroplasts and its subsequent purification would provide a sustainable source of TGFb3 free of animal pathogens. A synthetic sequence (33% GC) containing frequent chloroplast codons raised accumulation of the 13-kDa TGFb3 polypeptide by 75-fold compared to the native coding region (56% GC) when expressed in tobacco chloroplasts. The 13-kDa TGFb3 monomer band was more intense than the RuBisCO 15-kDa small subunit on Coomassie blue-stained SDS-PAGE gels. TGFb3 accumulated in insoluble aggregates and was stable in leaves of different ages but was not detected in seeds. TGFb3 represented 12% of leaf protein and appeared as monomer, dimer and trimer bands on Western blots of SDS-PAGE gels. High yield and insolubility facilitated initial purification and refolding of the 13-kDa polypeptide into the TGFb3 homodimer recognized by a conformation-dependent monoclonal antibody. The TGFb3 homodimer and trace amounts of monomer were the only bands visible on silver-stained gels following purification by hydrophobic interaction chromatography and cation exchange chromatography. N-terminal sequencing and electronspray ionization mass spectrometry showed the removal of the initiator methionine and physical equivalence of the chloroplast-produced homodimer to standard TGFb3. Functional equivalence was demonstrated by near-identical dose-response curves showing the inhibition of mink lung epithelial cell proliferation. We conclude that chloroplasts are an attractive production platform for synthesizing recombinant human TGFb3.
Dual-conditional positive/negative selection markers are versatile genetic tools for manipulating genomes. Plastid genomes are relatively small and conserved DNA molecules that can be manipulated precisely by homologous recombination. Highyield expression of recombinant products and maternal inheritance of plastid-encoded traits make plastids attractive sites for modification. Here, we describe the cloning and expression of a dao gene encoding D-amino acid oxidase from Schizosaccharomyces pombe in tobacco (Nicotiana tabacum) plastids. The results provide genetic evidence for the uptake of D-amino acids into plastids, which contain a target that is inhibited by D-alanine. Importantly, this nonantibiotic-based selection system allows the use of cheap and widely available D-amino acids, which are relatively nontoxic to animals and microbes, to either select against (D-valine) or for (D-alanine) cells containing transgenic plastids. Positive/negative selection with D-amino acids was effective in vitro and against transplastomic seedlings grown in soil. The dual functionality of dao is highly suited to the polyploid plastid compartment, where it can be used to provide tolerance against potential D-alanine-based herbicides, control the timing of recombination events such as marker excision, influence the segregation of transgenic plastid genomes, identify loci affecting dao function in mutant screens, and develop D-valine-based methods to manage the spread of transgenic plastids tagged with dao.
BackgroundGene editing technologies enable the precise insertion of favourable mutations and performance enhancing trait genes into chromosomes whilst excluding all excess DNA from modified genomes. The technology gives rise to a new class of biotech crops which is likely to have widespread applications in agriculture. Despite progress in the nucleus, the seamless insertions of point mutations and non-selectable foreign genes into the organelle genomes of crops have not been described. The chloroplast genome is an attractive target to improve photosynthesis and crop performance. Current chloroplast genome engineering technologies for introducing point mutations into native chloroplast genes leave DNA scars, such as the target sites for recombination enzymes. Seamless editing methods to modify chloroplast genes need to address reversal of site-directed point mutations by template mediated repair with the vast excess of wild type chloroplast genomes that are present early in the transformation process.ResultsUsing tobacco, we developed an efficient two-step method to edit a chloroplast gene by replacing the wild type sequence with a transient intermediate. This was resolved to the final edited gene by recombination between imperfect direct repeats. Six out of 11 transplastomic plants isolated contained the desired intermediate and at the second step this was resolved to the edited chloroplast gene in five of six plants tested. Maintenance of a single base deletion mutation in an imperfect direct repeat of the native chloroplast rbcL gene showed the limited influence of biased repair back to the wild type sequence. The deletion caused a frameshift, which replaced the five C-terminal amino acids of the Rubisco large subunit with 16 alternative residues resulting in a ~30-fold reduction in its accumulation. We monitored the process in vivo by engineering an overlapping gusA gene downstream of the edited rbcL gene. Translational coupling between the overlapping rbcL and gusA genes resulted in relatively high GUS accumulation (~0.5 % of leaf protein).ConclusionsEditing chloroplast genomes using transient imperfect direct repeats provides an efficient method for introducing point mutations into chloroplast genes. Moreover, we describe the first synthetic operon allowing expression of a downstream overlapping gene by translational coupling in chloroplasts. Overlapping genes provide a new mechanism for co-ordinating the translation of foreign proteins in chloroplasts.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-016-0857-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.