Diastolic ventricular dysfunction is a significant problem in older people, with at least 40% of older heart failure patients having diastolic dysfunction as the etiology of their heart failure. The pathophysiology of diastolic dysfunction is varied but usually involves impaired left ventricular relaxation and/or increased ventricular stiffness, each partially related to normal aging changes, as well as underlying cardiovascular diseases. The significance of heart failure caused by diastolic dysfunction is great, with increased morbidity and mortality compared with other cardiac diseases that have the same preserved systolic function. Diagnosis of diastolic dysfunction can be clinically difficult and often requires further testing to determine if diastolic dysfunction is present. At this time, no therapy specifically treats diastolic dysfunction, but several medications, such as diuretics, calcium channel blockers, beta blockers, and angiotension-converting enzyme inhibitors, offer symptomatic relief and may prevent progression of the disorder.
We examined the left ventricular (LV) mechanical actions of levosimendan (LSM) before and after the development of pacing-induced cardiomyopathy in conscious dogs chronically instrumented for measurement of aortic and LV pressure, +dP/dt, subendocardial segment length, and cardiac output (CO). The slope (Mw) of the regional preload recruitable stroke work relation was used to assess myocardial contractility. Diastolic function was evaluated with a time constant of isovolumic relaxation (tau), the maximal rate of segment-lengthening velocity (dL/dt), and a regional chamber-stiffness constant (Kp). On different experimental days, dogs were assigned to receive LSM (12- or 24-microgram/kg loading dose and 0.2 or 0.4 microgram/kg/min infusion) before rapid ventricular pacing was initiated. Dogs were then paced at 240 beats/min for 22 +/- 2 days, and the low and high doses of LSM were repeated on separate days. LSM increased Mw and +dP/dt in dogs before the initiation of pacing, consistent with enhanced myocardial contractility. LSM also improved indices of LV diastolic function (decreases in tau and Kp and increases in dL/dt) in dogs before pacing. Rapid ventricular pacing over a 3-week period increased LV end-diastolic pressure and produced systolic (decreases in Mw and +dP/dt) and diastolic (increases in tau and Kp and decreases in dL/dt) dysfunction. LSM significantly (p < 0.05) increased Mw (54 +/- 3 to 98 +/- 6 mm Hg) +dP/dt and dL/dt (57 +/- 13 to 72 +/- 13 mm/s) and decreased tau (66 +/- 4 to 52 +/- 3 ms) and Kp (1.14 +/- 0.14 to 0.71 +/- 0.03 mm-1) in the presence of LV dysfunction. In contrast to the findings in normal dogs, however, LSM did not alter heart rate and calculated indices of myocardial oxygen consumption in dogs after pacing. The findings indicate that LSM produces favorable alterations in hemodynamics and positive inotropic and lusitropic effects in conscious dogs with left ventricular dysfunction.
BACKGROUND Guidelines recommend nonstatin lipid-lowering agents in patients at very high risk for major adverse cardiovascular events (MACE) if low-density lipoprotein cholesterol (LDL-C) remains ≥70 mg/dL on maximum tolerated statin treatment. It is uncertain if this approach benefits patients with LDL-C near 70 mg/dL. Lipoprotein(a) levels may influence residual risk. OBJECTIVES In a post hoc analysis of the ODYSSEY Outcomes (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) trial, the authors evaluated the benefit of adding the proprotein subtilisin/kexin type 9 inhibitor alirocumab to optimized statin treatment in patients with LDL-C levels near 70 mg/dL. Effects were evaluated according to concurrent lipoprotein(a) levels. METHODS ODYSSEY Outcomes compared alirocumab with placebo in 18,924 patients with recent acute coronary syndromes receiving optimized statin treatment. In 4,351 patients (23.0%), screening or randomization LDL-C was <70 mg/dL (median 69.4 mg/dL; interquartile range: 64.3–74.0 mg/dL); in 14,573 patients (77.0%), both determinations were ≥70 mg/dL (median 94.0 mg/dL; interquartile range: 83.2–111.0 mg/dL). RESULTS In the lower LDL-C subgroup, MACE rates were 4.2 and 3.1 per 100 patient-years among placebo-treated patients with baseline lipoprotein(a) greater than or less than or equal to the median (13.7 mg/dL). Corresponding adjusted treatment hazard ratios were 0.68 (95% confidence interval [Cl]: 0.52–0.90) and 1.11 (95% Cl: 0.83–1.49), with treatment-lipoprotein(a) interaction on MACE ( P interaction = 0.017). In the higher LDL-C subgroup, MACE rates were 4.7 and 3.8 per 100 patient-years among placebo-treated patients with lipoprotein(a) >13.7 mg/dL or ≤13.7 mg/dL; corresponding adjusted treatment hazard ratios were 0.82 (95% Cl: 0.72–0.92) and 0.89 (95% Cl: 0.75–1.06), with P interaction = 0.43. CONCLUSIONS In patients with recent acute coronary syndromes and LDL-C near 70 mg/dL on optimized statin therapy, proprotein subtilisin/kexin type 9 inhibition provides incremental clinical benefit only when lipoprotein(a) concentration is at least mildly elevated. (ODYSSEY Outcomes: Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab; NCT01663402 )
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.