Insufficient vascularization limits the volume and complexity of biomaterials-based tissue engineering approaches. The formation of new blood vessels (neovascularization) is regulated by a complex interplay of cellular interactions with biochemical and biophysical signals provided by the extracellular matrix (ECM) which necessitates the development of biomaterial approaches that enable systematic modulation in matrix properties. Poly(ethylene) glycol-based hydrogel scaffolds were engineered with a range of decoupled and combined variations in integrin-binding peptide (RGD) ligand concentration, elastic modulus and proteolytic degradation rate using free-radical polymerization chemistry. The modularity of this system enabled a full factorial experimental design to simultaneously investigate the individual and interaction effects of these matrix cues on vascular sprout formation in 3D culture. Enhancements in scaffold proteolytic degradation rate promoted significant increases in vascular sprout length and junction number while increases in modulus significantly and negatively impacted vascular sprouting. We also observed that individual variations in immobilized RGD concentration did not significantly impact 3D vascular sprouting. Our findings revealed a previously unidentified and optimized combination whereby increases in both immobilized RGD concentration and proteolytic degradation rate resulted in significant and synergistic enhancements in 3D vascular spouting. The above-mentioned findings would have been challenging to uncover using one-factor-at-time experimental analyses.
Gradients in mechanical properties, physical architecture and biochemical composition exist in a variety of complex tissues, yet 3D in vitro models that enable investigation of these cues on cellular processes, especially those contributing to vascularization of engineered tissues are limited. Here, a photopolymerization approach to create cell‐laden hydrogel biomaterials with decoupled and combined gradients in modulus, immobilized cell adhesive peptide (RGD) concentration, and proteolytic degradation enabling spatial encapsulation of vascular spheroids is reported to elucidate their impact on vascular sprouting in 3D culture. Vascular spheroids encapsulated in these gradient scaffolds exhibit spatial variations in total sprout length. Scaffolds presenting an immobilized RGD gradient promote biased vascular sprouting toward increasing RGD concentration. Importantly, biased sprouting is found to be dependent on immobilized RGD gradient characteristics, including magnitude and slope, with increases in these factors contributing to significant enhancements in biased sprouting responses. Conversely, reduction in biased sprouting responses is observed in combined gradient scaffolds possessing opposing gradients in RGD and modulus. The presented work is the first to demonstrate the use of a cell‐laden biomaterial platform to systematically investigate the role of multiple scaffold gradients as well as gradient slope, magnitude and orientation on vascular sprouting responses in 3D culture.
In articule number 2001706 by Georgia Papavasiliou and co‐workers, vascular cell‐laden gradient PEG hydrogels with five types of gradient combinations including immobilized cell adhesion peptide concentration (RGD), stiffness, and protease‐sensitivity are designed to investigate their role on spatial variations in vascular sprouting responses in 3D culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.