Commercial microwave links (MWLs) were suggested about a decade ago as a new source for quantitative precipitation estimates (QPEs). Meanwhile, the theory is well understood and rainfall monitoring with MWLs is on its way to being a mature technology, with several well-documented case studies, which investigate QPEs from multiple MWLs on the mesoscale. However, the potential of MWLs to observe microscale rainfall variability, which is important for urban hydrology, has not been investigated yet. In this paper, we assess the potential of MWLs to capture the spatio-temporal rainfall dynamics over small catchments of a few square kilometres. Specifically, we investigate the influence of different MWL topologies on areal rainfall estimation, which is important for experimental design or to a priori check the feasibility of using MWLs. In a dedicated case study in Prague, Czech Republic, we collected a unique dataset of 14 MWL signals with a temporal resolution of a few seconds and compared the QPEs from the MWLs to reference rainfall from multiple rain gauges. Our results show that, although QPEs from most MWLs are probably positively biased, they capture spatio-temporal rainfall variability on the microscale very well. Thus, they have great potential to improve runoff predictions. This is especially beneficial for heavy rainfall, which is usually decisive for urban drainage design.
The ability to predict the runoff response of an urban catchment to rainfall is crucial for managing drainage systems effectively and controlling discharges from urban areas. In this paper we assess the potential of commercial microwave links (MWL) to capture the spatio-temporal rainfall dynamics and thus improve urban rainfall-runoff modelling. Specifically, we perform numerical experiments with virtual rainfall fields and compare the results of MWL rainfall reconstructions to those of rain gauge (RG) observations. In a case study, we are able to show that MWL networks in urban areas are sufficiently dense to provide good information on spatio-temporal rainfall variability and can thus considerably improve pipe flow prediction, even in small subcatchments. In addition, the better spatial coverage also improves the control of discharges from urban areas. This is especially beneficial for heavy rainfall, which usually has a high spatial variability that cannot be accurately captured by RG point measurements.
Abstract. Opportunistic sensing of rainfall and water vapor using commercial microwave links operated within cellular networks was conceived more than a decade ago. It has since been further investigated in numerous studies, predominantly concentrating on the frequency region of 15–40 GHz. This article provides the first evaluation of rainfall and water vapor sensing with microwave links operating at E-band frequencies (specifically 71–76 and 81–86 GHz). These microwave links are increasingly being updated (and are frequently replacing) older communication infrastructure. Attenuation–rainfall relations are investigated theoretically on drop size distribution data. Furthermore, quantitative rainfall estimates from six microwave links, operated within cellular backhaul, are compared with observed rainfall intensities. Finally, the capability to detect water vapor is demonstrated on the longest microwave link measuring 4.86 km in path length. The results show that E-band microwave links are markedly more sensitive to rainfall than devices operating in the 15–40 GHz range and can observe even light rainfalls, a feat practically impossible to achieve previously. The E-band links are, however, substantially more affected by errors related to variable drop size distribution. Water vapor retrieval might be possible from long E-band microwave links; nevertheless, the efficient separation of gaseous attenuation from other signal losses will be challenging in practice.
Abstract. Increasing urbanization makes it more and more important to have accurate stormwater runoff predictions, especially with potentially severe weather and climatic changes on the horizon. Such stormwater predictions in turn require reliable rainfall information. Especially for urban centres, the problem is that the spatial and temporal resolution of rainfall observations should be substantially higher than commonly provided by weather services with their standard rainfall monitoring networks. Commercial microwave links (CMLs) are non-traditional sensors, which have been proposed about a decade ago as a promising solution. CMLs are line-of-sight radio connections widely used by operators of mobile telecommunication networks. They are typically very dense in urban areas and can provide path-integrated rainfall observations at sub-minute resolution. Unfortunately, quantitative precipitation estimates (QPEs) from CMLs are often highly biased due to several epistemic uncertainties, which significantly limit their usability. In this manuscript we therefore suggest a novel method to reduce this bias by adjusting QPEs to existing rain gauges. The method has been specifically designed to produce reliable results even with comparably distant rain gauges or cumulative observations. This eliminates the need to install reference gauges and makes it possible to work with existing information. First, the method is tested on data from a dedicated experiment, where a CML has been specifically set up for rainfall monitoring experiments, as well as operational CMLs from an existing cellular network. Second, we assess the performance for several experimental layouts of ground truth from rain gauges (RGs) with different spatial and temporal resolutions. The results suggest that CMLs adjusted by RGs with a temporal aggregation of up to 1 h (i) provide precise high-resolution QPEs (relative error < 7 %, Nash–Sutcliffe efficiency coefficient > 0.75) and (ii) that the combination of both sensor types clearly outperforms each individual monitoring system. Unfortunately, adjusting CML observations to RGs with longer aggregation intervals of up to 24 h has drawbacks. Although it substantially reduces bias, it unfavourably smoothes out rainfall peaks of high intensities, which is undesirable for stormwater management. A similar, but less severe, effect occurs due to spatial averaging when CMLs are adjusted to remote RGs. Nevertheless, even here, adjusted CMLs perform better than RGs alone. Furthermore, we provide first evidence that the joint use of multiple CMLs together with RGs also reduces bias in their QPEs. In summary, we believe that our adjustment method has great potential to improve the space–time resolution of current urban rainfall monitoring networks. Nevertheless, future work should aim to better understand the reason for the observed systematic error in QPEs from CMLs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.