Amphibians are undergoing large population declines in many regions around the world. As environmental pollution from both agricultural and urban sources has been implicated in such declines, there is a need for a biomonitoring approach to study potential impacts on this vulnerable class of organism. This study assessed the use of infrared (IR) spectroscopy as a tool to detect changes in several tissues (liver, muscle, kidney, heart and skin) of late-stage common frog (Rana temporaria) tadpoles collected from ponds with differing water quality. Small differences in spectral signatures were revealed between a rural agricultural pond and an urban pond receiving wastewater and landfill run-off; these were limited to the liver and heart, although large differences in body size were apparent, surprisingly with tadpoles from the urban site larger than those from the rural site. Large differences in liver spectra were found between tadpoles from the pesticide and nutrient impacted pond compared to the rural agricultural pond, particularly in regions associated with lipids. Liver mass and hepatosomatic indices were found to be significantly increased in tadpoles from the site impacted by pesticides and trace organic chemicals, suggestive of exposure to environmental contamination. Significant alterations were also found in muscle tissue between tadpoles from these two ponds in regions associated with glycogen, potentially indicative of a stress response. This study highlights the use of IR spectroscopy, a low-cost, rapid and reagent-free technique in the biomonitoring of a class of organisms susceptible to environmental degradation.
The occurrence of human as well as veterinary drug residues in surface water is caused by their insufficient removal ability from wastewater. Drug residues disturb the natural balance of water ecosystem, have a negative effect on non-target organisms and pose a significant risk for human health. The main aim of this study was to determine the concentration of residues of eight drugs from the group of sulfonamides (sulfathiazole, sulfadiazine, sulfamethazine, sulfamethoxazole, sulfadimethoxine, sulfadoxine, sulfamerazine, sulfachlorpyridazine), four drugs from the non-steroidal anti-inflammatory drug group (ibuprofen, ketoprofen, naproxen, diclofenac) and one representative of the analgesics-antipyretics group [paracetamol (acetaminophen)] in the surface water of the Elbe river basin. A total of 65 samples of surface water from the Elbe river basin were taken during August 2018 when the weather was constant without any significant fluctuations. The analysis was performed by means of liquid chromatography with tandem mass spectrometry (LC-MS/MS). The results have shown the numerous occurrences of sulfamethoxazole, ibuprofen, naproxen, diclofenac and paracetamol (acetaminophen). A statistically significant negative correlation between the river flow rate in the monitored locations and the residue concentration was found for ibuprofen, naproxen, diclofenac and paracetamol (acetaminophen). The most significant findings of the monitored drug residues were mostly determined in samples from small streams below larger urban settlements with a hospital or other health facilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.